• Title/Summary/Keyword: adjustable power

Search Result 181, Processing Time 0.022 seconds

Effect of Adjustable Speed Pumped Storage Power Generator on the Frequency Control Against the Intermittence of Wind Turbine Output (풍력발전기 출력변동성에 대비한 가변속 양수발전기의 주파수 제어효과)

  • Park, Min-Su;Chun, Yeong-Han
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.3
    • /
    • pp.338-342
    • /
    • 2014
  • Energy storage is a key issue when integrating large amounts of intermittent and non-dispatchable renewable energy sources into electric power systems. To maintain the instantaneous power balance and to compensate for the influence of power fluctuations from renewable sources, flexible capability for power control is needed. Adjustable Speed Pumped Storage Power Generator is pumped storage unit that is adjustable for pump output adjustments as well as the highest efficiency operations because it has fast response time. In this paper we address the adjustable speed pumped storage power generator for frequency control against the intermittence of wind turbine output and calculate the appropriate capacity of adjustable speed pumped storage power generator.

A Study on International Standards Related to Adjustable Speed DC Drive Systems (가변속 직류구동시스템 관련 국제규격에 관한 연구)

  • Hong Soon-Chan;Kim Kyung-Won
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.223-226
    • /
    • 2002
  • This paper studies the scope and text summary of international standards related to adjustable speed d.c. drive systems, especially IEC 61800-1 and IEC 61136-1. IEC 61800-1 applies to general purpose adjustable speed d.c. drive systems which include the power conversion, control equipment, and also a motor or motors. This standard applies to power drive systems connected to line voltages up to 1kV a.c., 50Hz or 60Hz. IEC 61136-1 provides alternative methods for specifying ratings for semiconductor power convertors for adjustable speed electric drive systems, particularly for d.c. motor drives.

  • PDF

A Study on EMC Product Standard Including Specific Test Methods Related to Adjustable Speed Electrical Power Drive Systems (가변속 전력구동시스템 관련 특수 시험방법을 포함한 EMC 제품규격에 관한 연구)

  • Hong Soon-Chan;Seo Young-Min;Kim Kyung-Won
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.99-103
    • /
    • 2002
  • IEC 61800 is an international standard on adjustable speed electrical power drive systems, which consists of three parts. IEC 61800-1 and IEC 61800-2 apply to DC power drive systems and AC power drive systems, respectively, which include power conversion, control equipment, and also a motor or motors. IEC 61800-3 specifies EMC ( Electro Magnetic Compatibility ) requirements for adjustable speed AC or DC motor drives connected to main supplies up to AC 1,000 volts. This paper studies the standards related to EMC and the text summary of international standard IEC 61800-3 which is an EMC product standard including specific test methods.

  • PDF

Research Study on the Application of AC Adjustable speed Drive for FD Fan Motor in power plant. (발전소 대용량 FD Fan 전동기의 교류 가변속 장치 (VVVF) 적용에 관한 연구)

  • Hur, Sung-Kwang;Rhew, Hong-Woo;Han, Kyung-Hie
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1203-1205
    • /
    • 1992
  • Due to poor energy resources, the importance of energy saving has been greatly emphasized. It can be one method of energy saving to reduce the power. The AC adjustable speed drive systems show excellent efficiency, which have been developed in recent years. The adjustable speed drive system improves the efficiency in lightly load condition and extend the life span of motor by limiting the over-current at starting. The main topic of study is the results of energy saving and emergency transfer.

  • PDF

Optimization of Wheat Harvest

  • Kim, S.H.;Kolaric, W.J.
    • Agricultural and Biosystems Engineering
    • /
    • v.1 no.1
    • /
    • pp.7-15
    • /
    • 2000
  • Optimization was considered from three perspectives : minimum grain loss, minimum damaged grain loss, and minimum power consumption. Factors affecting combine performance were classified as control, adjustable, and environmental. Control and adjustable factors were optimized by the parameter design developed by Taguchi. Environmental factors were used as input for optimization. Optimum range for control and adjustable factors are presented. Parameter design was adequate to obtain the optimum levels of control factors and optimum range of adjustable factors.

  • PDF

OPTIMIZATION OF WHEAT HARVEST

  • Kim, Sang-hun-;William-J.Kolaric;Kang, Whoa-Seug
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.714-726
    • /
    • 1993
  • Optimization was considered from three perspectives ; minimum grain loss, minimum damaged grain loss, and minimum power consumption. Factors affecting combine performance were classified as control , adjustable , and environmental. Control and adjustable factors were optimized by the parameter design developed by Tajuchi. Environmental factors were used as input for optimization Optimum range for control and adjustable factors are presented. Parameter design was adequate to obtain the optimum levels of control factors and optimum range of adjustable factors.

  • PDF

Induction Motor with Adjustable Windings for High Efficiency Drive in Light Load Operation

  • Zhang, Y.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.508-513
    • /
    • 2014
  • Heavy load start but light load operation is a common case in practical drive applications. When an induction motor is employed for such applications, its rated power is usually chosen according to the heavy load start. Then, during light load operation, its efficiency and power factor are low. To solve this problem, it is proposed to adjust the motor windings from the startup to the normal operation conditions. In this paper, arrangement of the adjustable windings is introduced, air gap field with different windings is investigated, and steady state operation performance under various loads is examined. It can be seen that by using proper winding arrangement both startup and operation performances are satisfactory.

Power Flow Control at the Subnetwork-Level in Microgrids

  • Liu, Kun;Khan, Muhammad Mansoor;Rana, Ahmad;Fei, Dong
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.588-603
    • /
    • 2018
  • This paper presents the idea of a smart load that can adjust the input power flow based on the intermittent power available from RESs (Renewable Energy Resources) to regulate the line voltage, and draw a constant power from the grid. To this effect, an innovative power flow controller is presented based on a Resistive ES (Electric Spring) in combination with a PEAT (Power Electronics based Adjustable Transformer), which can effectively shape the load power flow at the subnetwork level. With a PEAT incorporated in the step down transformer at the grid side, the proposed controller can supply non-critical loads through local RESs, and the critical loads can draw a relatively constant power from the grid. If there is an abundance of power produced by the RESs, the controller can supply both non-critical loads and critical loads through the RES, which significantly reduces the power demand from the grid. The principle, practicality, stability analysis, and controller design are presented. In addition, simulation results show that the power flow controller performs well in shaping the load power flow at the subnetwork level, which decreases the power demand on the grid. Experimental results are also provided to show that the controller can be realized.

The Phenomena Giving Rise of Nonlinear Load Operated by Unbalance Voltage (불평형 전압으로 운전시 비선형 부하에 나타나는 현상)

  • Kim, Jong-Gyeom;Lee, Eun-Ung
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.6
    • /
    • pp.285-291
    • /
    • 2002
  • In general, utility voltage is maintained at a relatively low level of Phase unbalance since a low level of unbalance can cause a significant power supply ripple and heating effects on the power system equipment. Voltage unbalance more commonly emerges in individual customer loads due to phase load unbalanced, especially where single phase power loads are used. Under unbalanced input voltages large lower order harmonics appears at the input and output ports of Power conversion devices. As the application of adjustable -speed drives (ASDs) and their integration with complex industrial processes increase, so does the need to understand how ASDs perform during voltage This paper describes a real load test to investigate the performance of 3-HP adjustable speed drives by an unbalanced voltage at the low-voltage system.