• 제목/요약/키워드: additive functional equation

검색결과 104건 처리시간 0.023초

ON THE SOLUTION OF A MULTI-VARIABLE BI-ADDITIVE FUNCTIONAL EQUATION I

  • Park, Won-Gil;Bae, Jae-Hyeong
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제13권4호
    • /
    • pp.295-301
    • /
    • 2006
  • We Investigate the relation between the multi-variable bi-additive functional equation f(x+y+z,u+v+w)=f(x,u)+f(x,v)+f(x,w)+f(y,u)+f(y,v)+f(y,w)+f(z,u)+f(z,v)+f(z,w) and the multi-variable quadratic functional equation g(x+y+z)+g(x-y+z)+g(x+y-z)+g(-x+y+z)=4g(x)+4g(y)+4g(z). Furthermore, we find out the general solution of the above two functional equations.

  • PDF

SOLUTION OF A VECTOR VARIABLE BI-ADDITIVE FUNCTIONAL EQUATION

  • Park, Won-Gil;Bae, Jae-Hyeong
    • 대한수학회논문집
    • /
    • 제23권2호
    • /
    • pp.191-199
    • /
    • 2008
  • We investigate the relation between the vector variable bi-additive functional equation $f(\sum\limits^n_{i=1} xi,\;\sum\limits^n_{i=1} yj)={\sum\limits^n_{i=1}\sum\limits^n_ {j=1}f(x_i,y_j)$ and the multi-variable quadratic functional equation $$g(\sum\limits^n_{i=1}xi)\;+\;\sum\limits_{1{\leq}i<j{\leq}n}\;g(x_i-x_j)=n\sum\limits^n_{i=1}\;g(x_i)$$. Furthermore, we find out the general solution of the above two functional equations.

ON AN ADDITIVE-QUADRATIC FUNCTIONAL EQUATION AND ITS STABILITY

  • PARK WON-GIL;BAE JAE-HYEONG;CHUNG BO-HYUN
    • Journal of applied mathematics & informatics
    • /
    • 제18권1_2호
    • /
    • pp.563-572
    • /
    • 2005
  • In this paper, we obtain the general solution and the generalized Hyers-Ulam stability of the additive-quadratic functional equation f(x + y, z + w) + f(x + y, z - w) = 2f(x, z)+2f(x, w)+2f(y, z)+2f(y, w).

AN ADDITIVE FUNCTIONAL INEQUALITY

  • Lee, Sung Jin;Park, Choonkil;Shin, Dong Yun
    • Korean Journal of Mathematics
    • /
    • 제22권2호
    • /
    • pp.317-323
    • /
    • 2014
  • In this paper, we solve the additive functional inequality $${\parallel}f(x)+f(y)+f(z){\parallel}{\leq}{\parallel}{\rho}f(s(x+y+z)){\parallel}$$, where s is a nonzero real number and ${\rho}$ is a real number with ${\mid}{\rho}{\mid}$ < 3. Moreover, we prove the Hyers-Ulam stability of the above additive functional inequality in Banach spaces.

STABILITY OF A FUNCTIONAL EQUATION OBTAINED BY COMBINING TWO FUNCTIONAL EQUATIONS

  • Park, Kyoo-Hong;Jung, Yong-Soo
    • Journal of applied mathematics & informatics
    • /
    • 제14권1_2호
    • /
    • pp.415-422
    • /
    • 2004
  • In this paper, we investigate the Hyers-Ulam stability and the super-stability of the functional equation f(x+y+rxy) = f(x)+f(y)+rxf(y)+ryf(x) which is obtained by combining the additive Cauchy functional equation and the derivation functional equation.