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THE STABILITY OF FUNCTIONAL INEQUALITIES WITH
ADDITIVE MAPPINGS

YouUNG-SUN CHO AND KIL-WOUNG JUN

ABSTRACT. In this paper, we prove the generalized Hyers—Ulam stabil-
ity of the functional inequalities associated with additive functional map-
pings. Also, we find the solution of these inequalities which satisfy certain
conditions.

1. Introduction

In 1940, S. M. Ulam [20] gave a talk before the Mathematics Club of the
University of Wisconsin in which he discussed a number of unsolved problems.
Among these was the following question concerning the stability of homomor-
phisms.

We are given a group G and a metric group G' with metric p(-,-). Given € >
0, does there exist a & > 0 such that if f : G — G’ satisfies p(f(zy), f(x)f(y)) <
6 for all z,y € G, then a homomorphism h : G — G’ exists with p(f(x), h(x)) <
€ forallz e G?

In 1941, D. H. Hyers [7] considered the case of approximately additive map-
pings f : E — E’', where E and E’ are Banach spaces and f satisfies Hyers
inequality

If(@+y)— fz) - f)ll <e
for all z,y € E. It was shown that the limit L(z) = limp— oo ! (2 2) exists for
all z € E and that L : E — E' is the unique additive mapping satlsfymg

If(z) — L(z)|| <e.
In 1978, Th. M. Rassias [16] provided a generalization of Hyers’ theorem
which allows the Cauchy difference to be unbounded.

Let f: E — E' be a mapping from a normed vector space E into a Banach
space E’ subject to the inequality

(1.1) I1f(z+y) = fl@) — fFO < elllz]|” + liyl®)
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for all z,y € E, where € and p are constants withe >0 and p < 1.
Then the limit L{z) = limy.se0 ﬂg_nz_) exists forallz € Eand L : E — E' is
the unique additive mapping which satisfies

2¢
(1.2) If(z) = L(z)]| < 9 —9p

for all x € E. If p < 0 then inequality (1.1) holds for z,y # 0 and (1.2) for
z#0.

In 1982, J. M. Rassias [15] followed the innovative approach of Th. M. Ras-
sias’ theorem [16] in which he replaced the factor ||z||” + |[y[|” by |l]|? - ||y||?
for p,g € R with p+ ¢ # 1. In 1990, Th. M. Rassias [17] during the 27"
International Symposium on Functional Equations asked the question whether
such a theorem can also be proved for p > 1. In 1991, Z. Gajda [3] following
the same approach as in Th. M. Rassias [16], gave an affirmative solution to
this question for p > 1. It was shown by Z. Gajda [3], as well as by Th. M. Ras-
sias and P. Semrl [18] that one cannot prove a Th. M. Rassias’ type theorem
when p = 1. The inequality (1.1) that was introduced for the first time by
Th. M. Rassias [16] provided a lot of influence in the development of a gener-
alization of the Hyers—Ulam stability concept. This new concept of stability is
known as generalized Hyers-Ulam stability or Hyers—Ulam—-Rassias stability of
functional equations (cf. the books of P. Czerwik [1], D. H. Hyers, G. Isac and
Th. M. Rassias [8]).

P. Gavruta [4] provided a further generalization of Th. M. Rassias’ theorem.
During the last two decades a number of papers and research monographs have
been published on various generalizations and applications of the generalized
Hyers-Ulam stability to a number of functional equations and mappings (see
(9]-[14]).

Throughout this paper, let G be a 2-divisible abelian group. Assume that
Y is a Banach space with norm || - ||y

In [5], Gildnyi showed that if f satisfies the functional inequality

(1.3) I12£(x) +2f(y) = flay™)I < I f @),

then f satisfies the Jordan—Von Neumann functional equation

2f(xz) +2f(y) = f(zy) + flay ™).

See also [19]. Gildnyi [6] and Fechner [2] proved the generalized Hyers-Ulam
stability of the functional inequality (1.3).
Now, we counsider the following functional inequalities

19 W@+ @I < 120D+ gy, 2)

(1.5) If@+ @+ @I < If@+y+2)l+élzy,2)

which are associated with Jordan—Von Neumann type Cauchy-Jensen additive
functional equations.

lll”
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In this paper, we investigate the generalized Hyers-Ulam stability of the
functional inequalities (1.4) and (1.5), which improve the main results of Park
et al [12]. Also we prove if f satisfies one of the inequalities (1.4) and (1.5)
with certain conditions, then f is Cauchy additive.

2. Stability of functional inequality (1.4)

We prove the generalized Hyers—Ulam stability of a functional inequality
(1.4) associated with a Jordan—Von Neumann type 3-variable Jensen additive
functional equation.

Theorem 2.1. Let (G,+) be a 2-divisible abelian group and (Y| - ||) be a
Banach space. Assume that a mapping f : G — Y satisfies the inequality

@1 1@+ )+ FEN < 2D+ 6l 2)

and that the map ¢ : G x G x G — [0, 00) satisfies the condition
> T Yy z
— Jp( 2. 2 2
w(x’yaz) T 202 ¢(2]7 2j’ 23) <
J:

for all z,y,z € G. Then there exists a unique Cauchy additive mapping A :
G — 'Y such that

22 AR — @) < [, —5,—3) + 26(5, 5. 0)
forallx € G.

Proof. Letting x := 2z, y := —z and 2z := —z in (2.1), we get
(2.3) If(22) + 2f(—2)|| < ¢(2z, —z, —z) + [|2f(0)]]

for all z € G. Also by letting y := —z and 2z := 0 in (2.1), we get
(2.4) () + f(=2)|| < ¢(z, —z,0) + 3| f(O)]]

for all z € G. Setting x,y, z := 0 in (2.1), we get || f(0)]| < #(0,0,0). So by the
condition of ¢, we have f(0) = 0. Hence we get by (2.3) and (2.4)

12 = 27 ()l

< Y1 F(5) =2 f )l
3=l

< SN2 () + 2 (= o)+ 127 =) + 2 )]
7=l

+1 z
9j+1 2J+1 ) +2 2 ¢)( 2J+1 (A 2j+1 70)]
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for all nonnegative integers m and I with m > [ and all x € G. It tends to zero
as | — oo by condition of ¢. It means that the sequence {2" f(5%)} is a Cauchy
sequence for all z € G. Since Y is complete, the sequence {2" f(& )} converges.
So one can define a mapping A : G — Y by A(z) := limp_.o0 2" (%) for all
z € G. Moreover, letting | = 0 and passing the limit m — oo in (2.5), we get
(2.2).

Next, we claim that the mapping 4 : G — Y is a Cauchy additive mapping.

We obtain by (2.1) and condition of ¢

14@) + AW) + A@)I = Tim 217 () + F(5) + F)
< Jim [2“nzf<-’”—'2“_y2—%'—f>n+¢(— )
= J2atHEEE),

Thus the mapping A : G — Y is Cauchy additive by Proposition 2.1 in [12].
Now, let T : G — Y be another Cauchy additive mapping satisfying (2.2).
Then we obtain

IA@ -T@I = 2"lA(z) - TGl
< 2M(AGR) - F) +ITGR) = £
< 2~[w(x,-—§,—-§)+2¢(5,—5, 0)]

which tends to zero as n — oo, because
. T x T z
hmn—»co [¢(x7—§»—§)+2¢(—,——,0)]

- j j+1 x -
= 11mn—>oo Z[2J¢(§7, _E_ﬁ - 2J+1) + 27 ¢( 2J+1 ’ 2j+1 70)] =0.

So we can conclude that A(x) = T(z) for all z € G. This proves the uniqueness
of A. Hence the mapping A : G — Y is a unique Cauchy additive mapping
satisfying (2.2). a

Remark 2.2. Let (G, +) be a 2-divisible abelian group and (Y, ||-||) be a Banach
space. Assume that a mapping f : G — Y satisfies the inequality (2.1) and
that the map ¢ : G x G x G — [0, 00) satisfies the condition

z

Yep2) = Y 2o, L 1 55) < o0

= 97795

for all z,y,2 € G. Then there exists a unique Cauchy additive mapping A :
G — Y such that

eo 12D < e L D) +ve -5, D)
for all z € G.
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Proof. The proof is similar to that of Theorem 2.1. O

Theorem 2.3. Let (G,+) be a 2-divisible abelian group and (Y, || - ||) be a
Banach space. Assume that a mapping f : G — Y satisfies the inequality (2.1)

and that the map ¢ : G x G x G — [0,00) satisfies the condition
i I
¥(z,y,2) = 5(15(2330,293/,292) < 00
j=0

for all z,y,z € G. Then there exists a unique Cauchy additive mapping A :
G — Y such that

(27) A@) ~ F@)] < 50(-22,7,2) +Y(2z, ~22,0)) + 51 SO
forallz € G.
Proof. Similarly, we get by (2.3) and (2.4)
1
I f(2) — 5 fEm )

-1

3

5 /() — g F@ D)

IA
i

< Yl 1@0) + g 2 D)
(2.8) j=l
1

. 1 j
+ g T a) + g F-2P )

3

I

m—1

1 . . .
< Z[Qm P(=27"z, 2z, 22)

j=l
. 5
ZJH ¢ e, =22, 0) + o £ (0)]]

for all nonnegative integers m and [ with m > land all z € G. It tends to zero as
! — oo and condition of ¢. It means that the sequence {5 f(2"z)} is a Cauchy
sequence for all z € G. Since Y is complete, the sequence {5~ f(2"z)} con-
verges. So one can define a mapping A4 : G — Y by A(z) == lim, .0 5= f(2"x)
for all z € G. Moreover, letting [ = 0 and passing the limit m — oo in (2.8),
we get (2.7).

The rest of the proof is similar to that of Theorem 2.1. O

Remark 2.4. Let (G, +) be a 2-divisible abelian group and (Y, ||-||) be a Banach
space. Assume that a mapping f : G — Y satisfies the inequality (2.1) and
that the map ¢ : G X G x G — [0, 00) satisfies the condition

.1 o
Y(x,y,2) 1= Z§¢(23$, 27y,272) < o0
j=0
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for all z,y,2z € G. Then there exists a unique Cauchy additive mapping A :
G — Y such that

09 12D 4l < Hp(-20,9,0) + 92,2, -2 + 2150
for all z € G.
Proof. The proof is similar to that of Theorem 2.3. O

Corollary 2.5. Let (G,+) be a 2-divisible abelian group and (Y, | - ||) be a
normed space. Assume that a mapping f : G — Y satisfies the inequality (2.1)
and that the map ¢ : G x G x G — [0,00) satisfies the conditions

(1) ¢(2z, —z,—2) = 0 or ¢(—z,2z,—x) =0 or ¢(—z,—z,2z) =0,

(2) ¢(z, —,0) =0 or ¢(z,0,—z) =0 or ¢(0,z,—z) =0,

(3) limp oo 2"¢(F5, 45, &) = 0 or lim, .o = ¢(2"x,2"y,2"z) = 0 for all
z, Y, 2 € G. Then f is Cauchy additive.
Proof. Letting z,y,z := 0 in (2.1), we get || f(0){| < ¢(0,0,0) = 0. So f(0) =0.
Setting z := 0 and y := —z in (2.1) and by condition (2) we get

If(z) + f(=2)|| < é(x, —,0) =

forall z € G. So f(—z) = —f(z).

And by letting x := 2z, y := —z and z := —z in (2.1). and by condition {1},
we get
(2.10)  [If(22) + 2f(—2)|| < #(22,~2,—2) =0, [f(22) =2f(=z)
for all z € G.

Next, we will consider two cases for condition (3) of ¢.

Case I : Assume limp.0 2"0(, 45, ) = 0 for all z,y,2 € G.
We get by (2.10)

f2w) =2f(), flz)=20(5) =4f(}) =+ =2"f(5) =

So we can define f(x) = lim, .o 2" f(55) for all z € G.
1t follows from {2.1) that

17 )+ W)+ fE = Lim 2% f( )+f( )+f( 2

Jim [2"u2f<“"c > ”2;1' )+ 290

= Jer ()

for all z,y,z € G. So ||f(z) + f(y) + f(2)|| £ ||2f(3EE2)]| for all z,y,2 € G.
Thus the mapping f : G — Y is Cauchy additive by Proposition 2.1 in [12].
Case II : Assume lim,_, —21;¢(2":1:, 2"y, 2"z) =0 for all z,y,2 € G.
We obtain by (2.10)

f@)=2f(@), f@)= 3 f@n) = (fl4r) =+ =5 f(2"5) =

Z
2n

IN

)]
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So we can define f(z) = limy—.c0 5= f(2"x) for all z € G. By (2.1), we obtain

1@+ fy)+ fI < lim i||f(2”90} + 1@+ FE )

< im [oRfr TS 4 ene, 2, 27)
r+y+z
12/ (———)II
Thus the mapping f : G — Y is Cauchy additive by Proposition 2.1 in [12].

N
Now we obtain the result of Park et al [12] in the following corollary

Corollary 2.6. Let f : G — Y be a mapping such that

cty+z
(2.11) (@) + fly) + [y < ||2f(——-2i--)||y
for all z,y,z € G. Then f is Cauchy additive.

Corollary 2.7. Assume that X is a normed space with norm ||-|[x. Letr # 1
and 6 be nonnegative real numbers, and let f: X — Y be a mapping such that

7@+ f@) + f@lly < 122y
(2.12) +ollele Tyl + 121%)

for all z,y,z € X. Then there exists a unique Cauchy additive mapping h :
X — Y such that

e LD he < e

forallz € X.

Proof. When r > 1, we apply Theorem 2.1. When r < 1, we apply Theo-
rem 2.3. O

3. Stability of functional inequality (1.5)

We prove the generalized Hyers-Ulam stability of a functional inequality
(1.5) associated with a Jordan—Von Neumann type 3-variable Cauchy additive
functional equation.

Theorem 3.1. Let (G,+) be a 2-divisible abelian group and (Y,| - ||) be a
Banach space. Assume that @ mapping [ : G — Y satisfies the inequality
3.1) If(x)+ f) + F) < Nf@+y+2)ll + 6,9, 2)
and that the map ¢ - G x G x G — [0,00) satisfies the conditions

(1) plz) = 23 0201 (5f5r) + 27 a(5%r) < oo for allz € G,

(2) limp o0 27P(5%, o5, 5=) = 0 forall z,y,2 € G.
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Here,
¢1(z) = min{é(2z, —z, —2), d(-=z, 2z, —x), d(—z, —z,2z)},
¢2(x) = min{¢(z, —z,0),¢(z,0,—z), ¢(z, —x,0)}.

Then there exists a unique Cauchy additive mapping A : G — Y such that

(3.2) A(z) — f(2)]| < p(z)

forallz € G.

Proof. Letting x := 2z, y := —z and 2 := —z in (3.1), we get
(3.3) £ (2x) + 2f ()|l < ¢1(=) + I FO)|

for all z € G. Also by letting z := 0 and y := —z in (3.1), we get
(3.4) If (@) + f(=z)|| < ¢2(z) + 2[F(O)|

for all z € G. Setting z,y, z := 0 in (3.1), we get || f(0)|| < 14(0,0,0). By the
condition (2), we have f(0) = 0. Hence we get by (3.3) and (3.4)

z mer T
12£(5) - 2 F ()

IA

m—1
DI F(55) = 2 )l
j=l

(35)  m-1
< Z[IIW( ) 29 f(— 23+1)||+||2J+1f(—2j+1)+2J+1f(2]+1)||]

j=l

m-—1

; x
< Y Vhilgm) + ¥ e 2J+1)

i=L

for all nonnegative integers m and [ with m > [ and all z € G. It tends to zero
as I — oo by condition of ¢. It means that the sequence {2" f(5%)} is a Cauchy
sequence for all x € G. Since Y is complete, the sequence {2" f (2n )} converges.
So one can define a mapping A : G — Y by A(z) := limp_.o 2" f(5%) for all
z € G. Moreover, letting [ = 0 and passing the limit m — oo in (3.1), we get
(3.2).

Next, we claim that the mapping A : G — Y is a Cauchy additive mapping.
We obtain by (3.1) and condition of ¢

a:+y

||A(w>+A(y> —A(x+y>n = lim 2"||f<2%>+f<2%> FESON
< lim 2”[||f (“Z;y)ﬂ Hy I
< nlggoznw(;,;, - )+¢($;y, , 2,:y)] =0.

So, we have A(z +y) = (w) + A(y).
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Now, let T': G — Y be another Cauchy additive mapping satisfying (3.1).
Then we obtain

lA@) - T@)ll = 21 A(5;) - T()l
< 2'(JA(5;) — FGDI+ IT(G) = F5)) < 27+ n(55)

which tends to zero as n — oo, because

oo

; +1, (LN _o j +1 _

Jim 2 1) =2 Jim 3 (g7r) + 27 a()] =0
j=n

So we can conclude that A(x) = T'(z) for all z € G. This proves the uniqueness

of A. Hence the mapping A : G — Y is a unique Cauchy additive mapping

satisfying (3.1). O

Remark 3.2. Let (G, +) be a 2-divisible abelian group and (Y, || -||) be a Banach
space. Assume that a mapping f : G — Y satisfies the inequality (3.1) and
that the map ¢ : G x G x G — [0, 00) satisfies the conditions

(1) p(:l?) = Z;iOQj_l[d)(_%v g—jz-FTa 2]%) + ¢(2L.77 _Qj%? _29%)] < o0 for all
z €@,

(2) limp o0 2"¢(5%, 5%, 2") 0 for all z,y,z € G. Then there exists a
unique Cauchy additive mapping A : G — Y such that

flx)— f(—=x
(3.6) DIED g < pta)
for all x € G.
Proof. The proof is similar to that of Theorem 3.1 O

Theorem 3.3. Let (G,+) be a 2-divisible abelian group and (Y,|| - ||) be a
Banach space. Assume that a mapping f : G — Y satisfies the inequality (3.1)
and that the map ¢ : G x G x G — [0, 00) satisfies the conditions

(1) p(2) := 172 g9 (=27 ) + ¢2(29F12)] < 00 for all z € G,

(2) limy, oo -2—1;c/>(2”z, 2"y, 2"2) =0 for all z,y,z € G.

Here,

¢1(ﬂ3) = m1n{¢(2z, —Z, —$),¢(—JZ,2$,—CIJ),¢(—IE, _172I)}7
¢2($) = min{¢(x,—x,0),¢(a:,(), —.’13),(25(.’1), —CE,O)}-
Then there exists a unique Cauchy additive mapping A: G — Y such that
3.7 A(z) — f(@)]l < p(z) + 3[£(0)]]
forallz € G.
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Proof. We get by (3.3) and (3.4)

I F(2'2) ~ o F@™ )

m—1
< Y l55@00) - g D)
3=l
. m—1 1 ] 1 -
(3.8) < Dl f@a) + g F(=27 o))
g=l

1 . 1 )
gl by (2J+1$)+§:5 (=2 2)|I]

m—1 ) ) 3
< Y b (-2 4 s ha(20) + S F O]

7=l
for all nonnegative integers m and | with m > [ and all z € G. It tends to zero
as I — oo by condition of ¢. It means that the sequence {5 f(2"z)} is a Cauchy
sequence for all z € G. Since Y is complete, the sequence {z f(2"x)} con-
verges. So one can define a mapping A: G — Y by A(z) := lim,—c 5 f(2"%)
for all z € G. Moreover, letting ! = 0 and passing the limit m — oo in (3.8),
we get (3.7).

The rest of the proof is similar to that of Theorem 3.1. O

Remark 3.4. Let (G, +) be a 2-divisible abelian group and (Y, || -||) be a Banach
space. Assume that a mapping f : G — Y satisfies the inequality (3.1) and
that the map ¢ : G x G x G — [0, 0) satisfies the conditions
1) p(z) = 2oz (d(—27F 1z, 292,27 7) + $(27H 1z, —27z, —277)] < o0
for all x € G,
(2) limp,—00 5 (2", 2"y, 2%2) = 0 for all z,y,2 € G.
Then there exists a unique Cauchy additive mapping A : G — Y such that

f r)— f —
(5.9 H22ED ) < pta
for all x € G.
Proof. The proof is similar to that of Theorem 3.3. O

Corollary 3.5. Let (G,+) be a 2-divisible abelian group and (Y, - ||) be a
normed space. Assume that a mapping f: G — Y satisfies the inequality (3.1)
and that the map ¢ : G x G x G — [0, 00) satisfies the conditions

(1) ¢(2x, —x,—x) = 0 or ¢(—z,2z,—x) =0 or ¢(—z,—x,2x) =0,

(2) ¢(x,—z,0) =0 or ¢(z,0,—z) =0 or ¢(0,z,—x) =0 for all z € G,

(3) limp o0 2"P(55, 2, 25) = 0 or limp—o0 55 ¢(2", 27y, 272) = 0 for all
z,Y,2 € G. Then f is Cauchy additive.
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Proof. Letting ¢ =y =z =0 in (3.1) and by condition, we get

1£(0)] < 56(0,0,0) =0.

So f(0) = 0. And by letting z = 0 and y = —z in (3.1) and by condition (2),
we get

(3.10) I1f(z) + f(=2)|| < é(z, —2,0) =0

for all z € G. Hence f(—z) = —f(z). Setting ¢ =2z, y = —z and z = —z in
(3.1) and by condition (1), we get

(3.11) If(2x) + 2f(—=)|| < ¢(2z, —z,—x) =0

for all z € G. So f(2z) = 2f(z).
Next, we will consider cases for condition (3) of ¢.
Case I : Assume limy, oo 2"9(5 3, 5 ) = 0 for all z,y,z € G. We get by
(3.11)
Z

f20) =2f(@), fla)=2f(5) =4f() = =2"F(57) =+

So we can define f(z) = lim,_oc 2" f(Z%) for all z € G. It follows from (3.1)
that

I£@) +F@) + @) = lim 2+ gn f(;;)n
< lim 2R+ 0 o )]
~ fa+y+ol

forall z,y,z € G. So | f(@) + f(y) + f(2)|| < | f{z+y+2)) forall z,y,2 € G.
Thus the mapping f: G — Y is Cauchy additive by Proposition 2.2 in [12].

Case II : Assume limy,_.o0 55 ¢(2"z,2%y,2"2) = 0 for all z,y,z € G. We
obtain by (3.11)

faa) = 21(a), (@)= () = {1n) = - = o F2) =
So we can define f(z) = lim,—.co 3+ f(2"x) for all € G. By (3.1), we obtain
If(z) + fly) + f)I < lim %llf(z"iv) + @)+ f2* @)

lim = (IF(2 +y + 2)]| + 62"z, 2", 2"2)]

AN

N0 27
= |flz+y+2)|
Thus the mapping f : G — Y is Cauchy additive by Proposition 2.2 in
[12]. O

Now we obtain the result of Park et al [12] in the following corollary
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Corollary 3.6. Let f : G — Y be a mapping such that

(3.12) If (@) + f() + f@)lly < If(z+y+2)lly
for all x,y,z € G. Then f is Cauchy additive.

Corollary 3.7. Assume that X is a normed space with norm ||-||x. Let r # 1
and 0 be nonnegative real numbers, and let f : X — Y be a mapping such that

If @)+ f) + f@)ly < Ifz+y+ 2y
+0(lzl"x + Iyll"x + 121" %)

for all z,y,z € X. Then there exists a unique Cauchy additive mapping h :
X —Y such that

(3.13)

f(=) — f(=2) 2" +2 r
— <
152 M@l < 7ol x
forallxe X.
Proof. When r > 1, we apply Theorem 3.1. When r < 1, we apply Theo-
rem 3.3. O
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