References
- T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66. https://doi.org/10.2969/jmsj/00210064
- P. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, Hong Kong, Singapore and London, 2002.
- H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244. https://doi.org/10.4064/cm-2-3-4-241-244
- W. Fechner, Stability of a functional inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 71 (2006), 149-161. https://doi.org/10.1007/s00010-005-2775-9
- J. A. Fridy, On statistical convergence, Analysis 5 (1985), 301-313.
- Z. Gajda, On stability of additive mappings, Internat. J. Math. Sci. 14 (1991), 431-434. https://doi.org/10.1155/S016117129100056X
- P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436. https://doi.org/10.1006/jmaa.1994.1211
- A. Gilanyi, Eine zur Parallelogrammgleichung aquivalente Ungleichung, Aequationes Math. 62 (2001), 303-309. https://doi.org/10.1007/PL00000156
- A. Gilanyi, On a problem by K. Nikodem, Math. Inequal. Appl. 5 (2002), 707-710.
- D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
- D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Basel, 1998.
- K. Jun and Y. Lee, A generalization of the Hyers-Ulam-Rassias stability of the Pexiderized quadratic equations, J. Math. Anal. Appl. 297 (2004), 70-86. https://doi.org/10.1016/j.jmaa.2004.04.009
- S. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press lnc., Palm Harbor, Florida, 2001.
- S. Karakus, Statistical convergence on probabilistic normed spaces, Math. Commun. 12 (2007), 11-23.
- E. Kolk, The statistical convergence in Banach spaces, Tartu Ul. Toime. 928 (1991), 41-52.
-
M. Mursaleen,
${\gamma}$ -statistical convergence, Math. Slovaca 50 (2000), 111-115. - M. Mursaleen and S. A. Mohiuddine, On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space, J. Computat. Anal. Math. 233 (2009), 142-149. https://doi.org/10.1016/j.cam.2009.07.005
- C. Park, Homomorphisms between Poisson JC*-algebras, Bull. Braz. Math. Soc. 36 (2005), 79-97. https://doi.org/10.1007/s00574-005-0029-z
- C. Park, Y. Cho and M. Han, Functional inequalities associated with Jordan- von Neumann-type additive functional equations, J. Inequal. Appl. 2007 (2007), Article ID 41820, 13 pages.
- J. M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal. 46 (1982), 126-130. https://doi.org/10.1016/0022-1236(82)90048-9
- Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
- Th. M. Rassias, Problem 16; 2, Report of the 27th International Symp. on Functional Equations, Aequationes Math. 39 (1990), 292-293; 309.
- Th. M. Rassias and P. Semrl, On the behaviour of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), 989-993. https://doi.org/10.1090/S0002-9939-1992-1059634-1
- J. Ratz, On inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 66 (2003), 191-200. https://doi.org/10.1007/s00010-003-2684-8
- T. Salat, On the statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139-150.
- H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), 73-34.
- S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.
- A. Wilansky, Modern Methods in Topological Vector Space, McGraw-Hill International Book Co., New York, 1978.
Cited by
- Functional equations and inequalities in paranormed spaces vol.2013, pp.1, 2013, https://doi.org/10.1186/1029-242X-2013-198