DOI QR코드

DOI QR Code

FUNCTIONAL INEQUALITIES IN PARANORMED SPACES

  • Received : 2012.10.26
  • Accepted : 2013.04.04
  • Published : 2013.05.15

Abstract

In this paper, we investigate additive functional inequalities in paranormed spaces. Furthermore, we prove the Hyers-Ulam stability of additive functional inequalities in paranormed spaces.

Keywords

References

  1. T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66. https://doi.org/10.2969/jmsj/00210064
  2. P. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, Hong Kong, Singapore and London, 2002.
  3. H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244. https://doi.org/10.4064/cm-2-3-4-241-244
  4. W. Fechner, Stability of a functional inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 71 (2006), 149-161. https://doi.org/10.1007/s00010-005-2775-9
  5. J. A. Fridy, On statistical convergence, Analysis 5 (1985), 301-313.
  6. Z. Gajda, On stability of additive mappings, Internat. J. Math. Sci. 14 (1991), 431-434. https://doi.org/10.1155/S016117129100056X
  7. P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436. https://doi.org/10.1006/jmaa.1994.1211
  8. A. Gilanyi, Eine zur Parallelogrammgleichung aquivalente Ungleichung, Aequationes Math. 62 (2001), 303-309. https://doi.org/10.1007/PL00000156
  9. A. Gilanyi, On a problem by K. Nikodem, Math. Inequal. Appl. 5 (2002), 707-710.
  10. D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
  11. D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Basel, 1998.
  12. K. Jun and Y. Lee, A generalization of the Hyers-Ulam-Rassias stability of the Pexiderized quadratic equations, J. Math. Anal. Appl. 297 (2004), 70-86. https://doi.org/10.1016/j.jmaa.2004.04.009
  13. S. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press lnc., Palm Harbor, Florida, 2001.
  14. S. Karakus, Statistical convergence on probabilistic normed spaces, Math. Commun. 12 (2007), 11-23.
  15. E. Kolk, The statistical convergence in Banach spaces, Tartu Ul. Toime. 928 (1991), 41-52.
  16. M. Mursaleen, ${\gamma}$-statistical convergence, Math. Slovaca 50 (2000), 111-115.
  17. M. Mursaleen and S. A. Mohiuddine, On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space, J. Computat. Anal. Math. 233 (2009), 142-149. https://doi.org/10.1016/j.cam.2009.07.005
  18. C. Park, Homomorphisms between Poisson JC*-algebras, Bull. Braz. Math. Soc. 36 (2005), 79-97. https://doi.org/10.1007/s00574-005-0029-z
  19. C. Park, Y. Cho and M. Han, Functional inequalities associated with Jordan- von Neumann-type additive functional equations, J. Inequal. Appl. 2007 (2007), Article ID 41820, 13 pages.
  20. J. M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal. 46 (1982), 126-130. https://doi.org/10.1016/0022-1236(82)90048-9
  21. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
  22. Th. M. Rassias, Problem 16; 2, Report of the 27th International Symp. on Functional Equations, Aequationes Math. 39 (1990), 292-293; 309.
  23. Th. M. Rassias and P. Semrl, On the behaviour of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), 989-993. https://doi.org/10.1090/S0002-9939-1992-1059634-1
  24. J. Ratz, On inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 66 (2003), 191-200. https://doi.org/10.1007/s00010-003-2684-8
  25. T. Salat, On the statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139-150.
  26. H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), 73-34.
  27. S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.
  28. A. Wilansky, Modern Methods in Topological Vector Space, McGraw-Hill International Book Co., New York, 1978.

Cited by

  1. Functional equations and inequalities in paranormed spaces vol.2013, pp.1, 2013, https://doi.org/10.1186/1029-242X-2013-198