• Title/Summary/Keyword: added-mass method

Search Result 344, Processing Time 0.031 seconds

3-D Vibration Analysis of Floating Structures Like Ships Using FEM-BEM

  • Kim, Byung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1990.10a
    • /
    • pp.107-112
    • /
    • 1990
  • In the vibration analysis of structure in fluid such as ships and offshore structures, the hydrodynamic added mass considerably affects the result of analysis. Therefore correct evaluation of the hydrodynamic added mass effect is required for an accurate analysis. But the correct evaluation of the effect is not simple because the added mass varies with the mode shape of vibration as well as the configuration of the structure. The universal method employed to evaluate added mass in ship hull vibration is Lewis's method via the introduction of 3 dimensional correction factor. But this conventional method is valid only for beam-like vibration.

  • PDF

Calculation of Added Mass and Added Moment of Inertia for Chine Hull by Strip Method (단일배골형선(單一背骨型船)의 부가질량(附加質量) 및 부가관성(附加慣性)모우멘트의 일계산(一計算))

  • J.H.,Hwang;K.J.,Cho
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.5 no.2
    • /
    • pp.45-50
    • /
    • 1968
  • The added mass and the added moment of inertia of a hard chine hull for heave and pitch were calculated by strip method. For the $k_2$ coefficients, Hwang's values for the straight-framed sections were used and for $k_2$ coefficients Porter's values for ellipses were used in the calculation. Comparisons on added mass and added moment of inertia of hard chine hull with those of ordinary hull form were briefly discussed. The results of the calculation for hard Chine hull give greater valves than ordinary ships at zero Froude Number. Beam draft ratio seems to be much influenced on the added mass and added moment of inertia.

  • PDF

Estimation of Beam Mode Frequencies of Co-axial Cylinders Immersed in Fluid by Equivalent Mass Approach

  • Kim, Tae-Wan;Park, Suhn;Park, Keun-Bae
    • Nuclear Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.1-13
    • /
    • 2003
  • In this study, an effective method to estimate the fundamental frequencies of co-axial cylinders immersed in fluid is proposed. The proposed method makes use of the equivalent mass or density that is derived from the added mass matrix caused by the fluid-structure interaction (FSI) phenomenon. The equivalent mass is defined from the added mass matrix based on a 2-D potential flow theory. The theory on two co-axial cylinders extended to the case of three cylinders. To prove the validity of the proposed method, the eigenvalue analyses upon coaxial cylinders coupled with fluid gaps are peformed using the equivalent mass. The analyses results upon various fluid gap is conditions reveal that the present method could provide accurate frequencies and be suitable for expecting the fundamental frequencies of fluid coupled cylinders in beam mode vibration.

Development of Simplified Formulae for Added Mass of a 2-D Floating Body with a Semi-Circle Section in a Finite Water Depth (유한 수심에서 반원형 부유체의 부가질량계수 약산식 개발)

  • Koo, Weoncheol;Kim, Jun-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.80-84
    • /
    • 2013
  • This study is to develop the simplified formulae for added mass coefficient of a 2-D floating body with a semi-circle section in a finite water depth. The semi-circle floating body may represent a simplified midship section transformed by Lewis form, which can be used for the ship motion analysis by strip theory. Since the added mass coefficient varies with motion frequencies and sea bottom effect, the correction factor representing the effect of water depth and frequencies is developed for accurate prediction of added mass. Using a two-dimensional numerical wave tank (NWT) technique based on the boundary element method (BEM) including sea bottom boundary the reference values of added mass are calculated to develop the correction factor. For verification and effectiveness of the formulae, the predicted added mass coefficients for various frequencies and water depth ratios are compared with the calculated values from NWT technique.

Prediction of the Added Mass of a 50-meter Class Airship with Empennage (꼬리날개를 고려한 50m급 비행선의 부가 질량 예측)

  • Ok Honam;Lew Jae-Moon;Lee Yung-Gyo;Lee Jinwoo
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.799-802
    • /
    • 2002
  • Korea Aerospace Research Institute has been developing a 50-meter class airship to demonstrate the technology to be used in the development of a stratospheric airship, and importance of accurate prediction of the dynamic behavior of an airship before flight test is widely conceived. The added mass has large impact on the dynamic characteristics of an airship unlike for an airplane and the added mass of the airship with empennage is predicted in this paper. At first, the usability of the strip theory is examined which integrates the analytic two dimensional results in the cross section along the longitudinal axis. A panel method with the surface distribution of sources is developed and its validity is also examined. Finally, the panel method with both source and doublet distributions is implemented, and it is validated and applied for the calculation of the added mass of a 50-meter class airship. Using the methods developed, the influence of empennage and control surface deflection on the added mass property of the airship is studied.

  • PDF

Development of FAMD Code to Calculate the Fluid Added Mass and Damping of Arbitrary Structures Submerged in Confined Viscous Fluid

  • Koo, Gyeong-Hoi;Lee, Jae-Han
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.457-466
    • /
    • 2003
  • In this paper, the numerical finite element formulations were derived for the linearized Navier-Stokes' equations with assumptions of two-dimensional incompressible, homogeneous viscous fluid field, and small oscillation and the FAMD (Fluid Added Mass and Damping) code was developed for practical applications calculating the fluid added mass and damping. In formulations, a fluid domain is discretized with C$\^$0/-type quadratic quadrilateral elements containing eight nodes using a mixed interpolation method, i.e., the interpolation function for the velocity variable is approximated by a quadratic function based on all eight nodal points and the interpolation function for the pressure variable is approximated by a linear function based on the four nodal points at vertices. Using the developed code, the various characteristics of the fluid added mass and damping are investigated for the concentric cylindrical shell and the actual hexagon arrays of the liquid metal reactor cores.

Hydrodynamic Forces Characteristics of a Circular Cylinder with a Damping Plate (감쇠판이 부착된 원기둥의 동유체력 특성)

  • Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • The radiation of water waves by a heaving truncated circular cylinder with damping plate is solved in the frame of the three-dimensional linear potential theory. The damping plate has a distinct advantage in reducing the motion response of a floating circular cylinder by increasing the added mass and the damping coefficient. Using the matched eigenfunction expansion method, the characteristics of hydrodynamic added mass and the damping coefficient are investigated with various system parameters, such as the radius and submergence depth of the damping plate. It is found that both added mass and the damping coefficient are significantly increased due to the arranged features of the larger damping plate with shallow submergence, which are positive factors as a motion reduction device of the floating offshore platform. Also the numerical results for an oscillating submerged disk show that the added mass is negative and that the damping coefficient has a peak value at resonant frequency when submergence depth is sufficiently small.

Added Mass Estimation of Square Sections Coupled with a Liquid Using Finite Element Method

  • Jeong, Kyeong Hoon;Jhung, Myung Jo
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.234-244
    • /
    • 2017
  • Natural frequencies of immersed square sections decrease due to a contribution of added mass to the movement of square sections. In this study, natural frequencies of square sections are obtained as a function of gap size between the square section and a rigid square wall using the finite element method. Additionally, they are used to extract the added mass effect on translational and rotation motions. Published information and studies on the translational and torsional vibration of square beams are also examined for practical use. D coupling of a square section is also investigated for multiple square sections. The suggested added mass estimation can be applicable to the spent fuel storage design of a pressurized light water modulated nuclear power plant.

Global Ship Vibration Analysis by Using Distributed Fluid Added Mass at Grid Points (유체부가수질량 절점분포 방법에 의한 전선진동해석)

  • Kim, Young-Bok;Choi, Moon-Gil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.4
    • /
    • pp.368-374
    • /
    • 2011
  • Recently, the ship vibration analysis technique has been well set up by using FEM. The methods considering the hydrodynamic added mass and damping of the fluid surrounding a floating ship have been well developed, so that they can be calculated by using the commercial package FEM programs such as MSC/NASTRAN, ADINA and ANSYS. Especially, MSC/NASTRAN has the functions to consider the fluid in tanks(MFLUID) and to solve the Fluid-Structure Interaction(FSI) problem(DMAP). In this study, the global ship vibration with considering the added mass distributed at the grid points on the wetted shell surface is introduced to. In the new method, the velocity potentials of the fluid surrounding a floating ship are calculated by solving the Lapalce equation using the Boundary Element Method(BEM), and the point mass is obtained by integrating the potentials at the points. Then, the global vibration analyses of the ship structure with distributed added mass on the wetted surface are carried out for an oil/chemical tanker. During the future sea trial, the results will be confirmed by measurement.

A Study on Vibration Characteristics in Water Tank with Multi-panels (복수 평판으로 이루어진 접수 탱크 구조물의 진동 특성에 관한 연구)

  • Bae, S.Y.
    • Journal of Power System Engineering
    • /
    • v.14 no.6
    • /
    • pp.67-74
    • /
    • 2010
  • Many tanks are installed in ship and marine structures. They are often in contact with inner or outer fluid, like ballast, fuel and cargo tanks. Fatigue damages are sometimes observed in these tanks which seem to be caused by resonance with exciting force of engine and propeller. Vibration characteristics of these thin walled tanks in contact with fluid near engine and propeller are strongly affected by added mass of containing fluid. Therefore it is essentially important to estimate the added mass effect to predict vibration of the tanks. Many authors have studied vibration of cylindrical and rectangular tanks containing fluid. Few research on dynamic interaction among tank walls through fluid are reported in the vibration of rectangular tanks recently. In case of rectangular tanks, structural coupling between adjacent panels and effect of vibration modes of multiple panels on added mass have to be considered. In the previous report, A numerical tool of vibration analysis of a 3-dimensional tank is developed by using finite element method for plates and boundary element method for fluid region. In this paper, the coupling effect between panels of a tank on added mass of containing fluid, the effect of structural constraint between panels on each vibration mode for fluid region and mode characteristics in accordance with changing breadth of the plates are investigated numerically and discussed.