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a b s t r a c t

Natural frequencies of immersed square sections decrease due to a contribution of added

mass to the movement of square sections. In this study, natural frequencies of square

sections are obtained as a function of gap size between the square section and a rigid

square wall using the finite element method. Additionally, they are used to extract the

added mass effect on translational and rotation motions. Published information and

studies on the translational and torsional vibration of square beams are also examined for

practical use. D coupling of a square section is also investigated for multiple square sec-

tions. The suggested added mass estimation can be applicable to the spent fuel storage

design of a pressurized light water modulated nuclear power plant.

Copyright © 2016, Published by Elsevier Korea LLC on behalf of Korean Nuclear Society. This

is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

It is generally known that the natural frequency of a structure

in contact with, or immersed in, a liquid decreases signifi-

cantly compared with that in a vacuum or in the air. This

problem is referred to as a fluidestructure interaction prob-

lem. Many investigators have obtained some approximate

solutions to this problem, which have been used to predict the

changes in the natural frequencies of a structure in a liquid [1].

The dynamic interaction between an elastic structure and a

liquid has been the subject of intensive investigations

in recent years. However, analytical solution procedures are

available only for simple problems. Therefore, numerical

approaches that can be formulated in the time or frequency

domain have to be employed. Since variational principles are

employed to derive numerical solutions, many researchers

have attempted to derive variational principles for different

classes of fluidestructure interaction problems, which are

stimulated using new technical applications and by the

availability of powerful numerical tools based on the finite

element and boundary element methods.

Typical examples of fluidestructure interaction problems

are fuel assemblies in a nuclear reactor.When fuel assemblies

are removed from the core, they must be transported to pools

filled with water because they are still highly radioactive and

continue to generate heat for a long time. They are stored on
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racks in the pool and submerged in the circulating water for

cooling and protection against irradiation. As the amount of

spent fuel assemblies increases, the spent fuel assemblies can

be placed in metal containers the walls of which contain

neutron-absorbing materials, in order to increase the storage

density. High-density spent fuel storage racks in the pool

should be designed to withstand dynamicmotionwithout any

loss of structural integrity during earthquakes. At the

same time, they should provide continuous cooling by natural

convection, and spent fuel assemblies should be protected

against criticality. Prior to the seismic analysis of the fuel as-

semblies submerged in the pool, dynamic characteristics

of the fuel assemblies must be taken into account [2]. There-

fore, it is very important to identify the hydrodynamic

coupling between the fuel assemblies and rack structures. In

particular, the liquid gap between the spent fuel assemblies,

or that between the fuel assemblies and the rack significantly

affects the dynamic characteristics of the liquid-coupled

system.

Similarly, fuel assemblies in the reactor core are also

submerged in the circulating primary coolant during normal

plant operation. The square sectional fuel assemblies are

coupled with the coolant. The arrangement of the fuel as-

semblies in the core of the commercial power plant is basi-

cally composed of square sections with liquid gaps. This

produces an increase in the added mass and diversity in

coupled mode shapes.

This study will provide a hydroelastic vibration analysis of

single or multiple square beams contained in a rigid square

containerwith respect to translational or torsionalmotions, to

identify the hydrodynamic effect. Natural frequencies of the

square sections are obtained as a function of the gap size

between the square section and the rigid square wall, using a

commercial finite element analysis code. Simultaneously, the

added masses on translational and torsional motions are

extracted. The published information and studies on the

translational and torsional vibration of the square beams are

also re-examined for practical use. Dynamic coupling of the

square sections owing to the presence of the liquid is also

investigated for multiple square sections.

2. Analytical solution for added mass
coefficient

Assuming that an infinitely long rigid structure is supported

by an elastic spring, it can be regarded as a square section in a

two-dimensional (2D) domain. The assumption excludes the

axial movement of the liquid, and only the lateral motion is

taken into account. When the length of the square sections is

considered as a 3D problem, an equal length of the liquidmust

also be considered to obtain the addedmass of the liquid. The

added mass of the liquid may be overestimated when the

square sections are short or when the axial mode number is

larger.

The lateral motion w of a square section will be written as

follows:

m
d2w
dt2

þ kw ¼ 0 (1)

where m is the mass per unit length of the structure and k is

the spring constant. The natural frequency in a vacuum, ua, is

simply given as follows:

ua ¼ 2pfa ¼
ffiffiffiffiffi
k
m

r
(2)

A liquid in contact with the structure cannot move ac-

cording to an arbitrarily assigned law of liquid velocity. For the

motion to be possible, it is evidently necessary that the con-

tinuity equation be satisfied. In particular, possible irrota-

tionalmotions of a fluid are subject to a condition inwhich the

velocity potential F shall satisfy the Laplace equation:

V2F ¼ 0 (3)

When the structure is submerged in an infinite liquid, the

corresponding equation of motion will become as follows,

owing to the added mass of the liquid:

�
mþmf

�d2w
dt2

þ kw ¼ 0; (4)

wheremf is an added mass of the liquid [3e6]. In addition, the

natural frequency of the structure oscillating in the liquid is

expressed as follows:

u ¼ 2pf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
mþmf

s
(5)

Comparing Eq. (2) with Eq. (5), we can obtain the normal-

ized natural frequency as follows:

u

ua
¼ f

fa
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

mþmf

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ �
mf

�
m
�

s
: (6)

As the term mf/m in Eq. (6) is greater than zero, the

normalized nondimensional frequency, u/ua, is always less

than unity. That is, the liquid tends to reduce the natural

frequency. Based on this simple example, it is obvious that the

dynamic response characteristics of the systemdepend on the

added mass coefficient for a single rigid structure in an ideal

liquid. As long as the added mass coefficient is known, the

dynamic response including the natural frequency in a liquid

can easily be calculated.

Even though some papers on the added mass of circular

sectional structures were published by the theoretical

method, researches on the added mass of square sectional

structures are rare. Generally, liquid corners in contact with

the square sections provide mathematical singular points in

the analytical formulation. Therefore, the numerical method

based on the variational principle may be applicable to the

problem. However, it would be a new work on this problem to

provide some practical information that can be used in the

structural design of nuclear engineering.

3. Added mass estimation

3.1. Translational motion

A square section surrounded by a liquid is supported using a

spring, as shown in Fig. 1. The liquid is bounded by a larger

rigid square container, which is concentrically arranged with
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the square section. The side length of the square section is a,

and the liquid gap between the inner section and the outer

square container is c. The square section with a mass m is

laterally supported by a spring with a spring constant k. The

vibratory motion of the liquid-coupled system is significantly

affected by the liquid gap. The liquid velocity potential of the

square annular section should satisfy the Laplace equation

with the corresponding liquid boundary conditions. However,

it is very difficult to find an explicit solution that satisfies the

Laplace equation and the liquid boundary conditions, owing

to the presence of corners. Therefore, the finite element an-

alyses, using the commercial computer code ANSYS (release

15; ANSYS, Inc., Canonsburg, PA, USA), were carried out for

the square sections. To extract the added mass coefficient

using ANSYS (ANSYS, Inc.), a 2D finite element model was

constructed, as shown in Fig. 2.

A finite element model was constructed to extract natural

frequencies of the liquid-coupled system (Table 1). The square

section was meshed with an equal size of a 2D solid structure

element (PLANE182) that can be used as either a plane element

(plane stress, plane strain, or generalized plane strain) or an

axisymmetric element. The element is defined by four nodes,

with each node having two degrees of freedom: translations

in the nodal x and y directions. Basically, axisymmetric ele-

ments can be applicable to cylindrical structures with an axis.

A fixed circumferential mode number should be given in the

axisymmetric finite element model for the finite element

analysis. Therefore, modeling with axisymmetric elements

Fig. 2 e Two-dimensional finite element analysis model of a square section surrounded by a bounded liquid.

Liquid

Spring

c
a

a +2 c

a+2 c

a

c

Square section

External square container

x

y

Fig. 1 e A square section model surrounded with a bounded liquid.
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may be inappropriate, and plane elements are used in this

problem. The liquid region was modeled with an equal size of

a 2D fluid element (FLUID29), which is used for modeling the

fluid medium and the interface in fluidestructure interaction

problems. Typical applications of the fluid element include

sound wave propagation and submerged structure dynamics.

The governing equation for acoustics, namely, the 2D wave

equation, has been discretized, taking into account the

coupling of the acoustic pressure and structural motion at the

interface. The fluid element has four corner nodes with three

degrees of freedom per node: translations in the nodal x and y

directions, and pressure. The translations, however, are

applicable only at nodes that are on the interface. The liquid

region in the gap between the square section and the outer

rigid container was divided into a number of identical liquid

elements, and the square section was also meshed with a

plane element, as shown in Fig. 2. A spring laterally attached

to the square section was constructed using a springedamper

element (COMBIN14), which has a longitudinal or torsional

capability in 1D, 2D, or 3D applications. The longitudinal

springedamper option is a uniaxial tensionecompression

element with up to three degrees of freedom at each node:

translations in the nodal x, y, and z directions. The spring-

edamper element has no mass. The nodes of the liquid ele-

ments at x ¼ ± (a/2 þ c) and y ¼ ± (a/2 þ c) were constrained in

the normal direction. By contrast, liquid movement along the

container walls is not restricted to the tangential direction.

Additionally, nodes of the liquid elements at x ¼ ± a/2 and

y ¼ ± a/2 were constrained in the normal direction. The liquid

element nodes adjacent to the outer surface of the wetted

square section coincided with those of the inner square sec-

tion. The element size of the model was 1.0 mm. A bulk

modulus of 2.2 GPa was used to take into account the

compressibility of water, which is equivalent to the speed of

sound in water (1,483m/s). The liquid gap in themodel ranged

from 1 mm to 500 mm. The natural frequencies obtained in

the finite element analysis are listed in Table 2 as a function of

the gap ratio h ¼ c/a. Shell modes of the square section were

not considered.

The natural frequency of the square section submerged in

water, fw, can be obtained using the added mass term, as

written in Eq. (7):

fw ¼ 1
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

rAe þ Cmroa2

s
(7)

where Ae is the cross-sectional area of the effective square

section, r is the square section density, k is the spring constant,

andCm is the addedmass coefficient. Thedimensionless added

mass coefficient is the added mass divided by the displaced

liquid mass. It is necessary to introduce a hydrodynamic co-

efficient in the fluidestructure interaction, because the added

mass depends on the liquid density and geometry of a liquid-

coupled system. Therefore, the added mass coefficient, as a

normalized index, indicates a relative hydrodynamic effect on

the structure in contact with a liquid. The cross-sectional area

of the effective square section will be given as follows:

Ae ¼ Ao � ða� 2hÞ2 ¼ a2 � ða� 2hÞ2 ¼ 4ða� hÞh (8)

where h is the thickness of the square section and Ao ¼ a2. The

added mass coefficient will be expressed as Eq. (9), as a

function of the frequency ratio:

Cm ¼ 4ða� hÞh
a2

�
r

ro

�h�
f
�
fw
�2 � 1

i
(9)

The added mass coefficients for the square and circular

sections with a liquid gap is estimated based on Table 2, as

shown in Fig. 3, as a function of gap ratio (h), where the Fritz

equation for the added mass coefficient is included for the

circular section [7]. Fritz [7] proposed a theory on the free vi-

bration of two cylinders coupled with a gap of an ideal liquid.

He suggested that the added mass coefficient for a circular

section with an annular gap liquid is given as

Cmc ¼ ðR2
o þ R2

i Þ=ðR2
o � R2

i Þ, where the radii of the moving inner

and stationary outer cylinders are denoted by Ri and Ro,

respectively. This is extremely large for a narrow gap,

regardless of the configuration of the section. As the liquid gap

increases, the added mass coefficients are drastically

deceased, as illustrated in Fig. 3. In a region with a gap ratio of

less than approximately 2.0, the added mass coefficient of a

circular section is greater than that of a square section. In the

region with a gap ratio of approximately 2.0, however, the

situation is the reverse. The added mass coefficient of the

square section is curve fitted as an exponential function. The

equation obtained by exponential curve fitting can effectively

be used for an estimation of the addedmasswith respect to an

arbitrary square section with a narrow liquid gap:

Table 2 e Natural frequencies of a square section for
various gap ratios.

Width of square
section, c (mm)

Gap ratio,
h (¼ c/a)

Natural frequency
(Hz), fw

Dry condition e 51.123

1.0 0.01 4.457

2.0 0.02 6.250

3.0 0.03 7.593

4.0 0.04 8.699

6.0 0.06 10.489

8.0 0.08 11.928

10.0 0.10 13.137

15.0 0.15 15.512

20.0 0.20 17.295

30.0 0.30 19.829

50.0 0.50 22.772

80.0 0.80 24.920

120.0 1.20 26.225

200.0 2.00 27.220

500.0 5.00 27.903

Table 1 e Physical and geometric input data for the two-
dimensional finite element analysis model.

Material Dimension or property Value

Square section Width of square section (mm) 100

Material density (kg/m2) 2,700

Poisson's ratio 0.3

Thickness (mm) 5.0

Modulus of elasticity (GPa) 300.0

Liquid Density (kg/m2) 1,000

Gap size (mm) 1e500

Spring Spring constant (N/m) 5.3 � 105
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Cm ¼ 1:27483þ 50:45354 exp

��0:01266� h

0:03266

�

þ 918:66757 exp

��0:01266� h

0:00689

�

þ 7:00018 exp

��0:01266� h

0:2255

�
(10)

The added mass of a square section in an infinite liquid,

when the square section in the infinite liquid medium moves

transversely, is listed in Table 14.1 of Blevins' paper [5] and

Table 1 of Chung's paper [8].

Mma ¼ 1:513 p ro

4
a2 ¼ 1:188 ro a

2 (11)

The added mass of a square section concentrically placed

in a square liquid-filled rigid tube will converge to this value

when the liquid gap increases infinitely. Fig. 3 shows that the

added mass coefficient of a square section converges to an

asymptotic value, 1.188 of Eq. (11).

3.2. Torsional motion

The torsional natural frequencies of a single circular cylinder

submerged in a liquid are not affected by the presence of the

liquid as long as it is inviscid. However, the presence of a

liquid surrounding the square section affects the torsional

motion of a single square section because the four corners of

the square section produce an additional liquid flow during a

motion. A schematic configuration of a square section

concentrically submerged in a liquid-filled external square

container is illustrated in Fig. 4. The section can rotate on an

axis perpendicular to the section, and a torsional spring is

attached to the pivot.

When the added mass inertia term owing to the ideal

liquid is considered, the equation of motion for a solid

square section submerged in an ideal liquid can be given as

follows:

�
Jc þ Jf

�d2q

dt2
þ ksq ¼ 0 (12)

where Jc is themassmoment of inertia of the square section, Jf
is the mass moment of inertia owing to the presence of the

liquid, and ks is the torsional spring constant. Therefore, the

natural frequency of the square section for the torsional

oscillation in a liquid is given as follows:

u ¼ 2 p f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kc

Jc þ Jf

s
(13)

The torsional natural frequency of the square section

under dry conditions is the following:

uc ¼ 2 p fc ¼
ffiffiffiffiffiffiffiffiffiffi
kc=Jc

p
(14)

We can obtain the normalized natural frequency from Eqs.

(13) and (14):

u

uc
¼ f

fc
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Jc

Jc þ Jf

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ �
Jf
�
Jc
�

s
(15)

As the term Jf/Jc in Eq. (15) is greater than zero, the

normalized nondimensional frequency, u/uc ¼ f/fc, is always

less than unity. That is, the liquid also tends to reduce the

torsional natural frequency. Based on this simple example, it

is obvious that the dynamic response characteristics of the

system depend on the addedmass coefficient for a single rigid

structure in an ideal liquid. As long as the added mass coef-

ficient is known, the dynamic response including the torsional
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A
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Fig. 3 e Translational added mass coefficients of a square

and a circular section concentrically submerged in a square

and a circular container.
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c
a

a+2 c

a+2 c

a

c

Square section
External square
container

Torsional
spring

Fig. 4 e Torsional vibration model of a square section

concentrically submerged in a square container.
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natural frequency in a liquid can easily be calculated. The area

moment of inertia of a hollow square section with thickness h

is written as follows:

Jc ¼ r

6

h
a4 � ða� 2hÞ4

i
(16)

The areamoment of inertia displacedwith a square section

will be expressed as follows:

Jf ¼ Cms ro a
4
�
6 (17)

The torsional added inertia of moment coefficient for the

square section can be extracted from the natural frequency

ratio using Eqs. (15e17):

Cms ¼
r
h
a4 � ða� 2hÞ4

i
ro a4

"�
fc
f

�2

� 1

#
: (18)

From the calculation of torsional natural frequencies using

the finite element analysis code ANSYS (ANSYS, Inc.), the

rotational added mass coefficient can be obtained. The ge-

ometry andmaterial properties are the same as those given in

Table 1, except for the spring constant kc ¼ 1,528.0 kg m2/s2.

Torsional natural frequencies and the added inertia of

moment are estimated for various liquid gaps, and the added

inertia of moment coefficient of the liquid for the torsional

mode of the square section is plotted in Fig. 5 as a function of

the liquid gap ratio. The torsional added inertia of moment

coefficient also decreases with the liquid gap and finally

converges at a specific value for an infinite liquid. The

torsional added inertia of moment coefficient can be approx-

imated using an exponential curve fitting.

Cms ¼ 0:27049þ 3:39038 Exp

� �h

0:1456

�

þ 14:65087 Exp

� �h

0:03387

�
þ 0:78929 Exp

� �h

0:70707

�
(19)
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Fig. 5 e Torsional added inertia of moment coefficient of a

square section with a liquid gap.
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Fig. 6 e A square section coupled with a liquid gap for

diagonal movement.
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with a liquid gap.
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The torsional added inertia of moment coefficient per unit

length of a square cross section in an infinite liquid, as the

square section in the infinite liquid medium rotates along its

center, is listed in Table 1 of Blevins' paper [5]:

Cmr ¼ 0:2757: (20)

The torsional added inertia of moment of a square section

concentrically placed in a square liquid-filled rigid tube will be

converged to this value when the liquid gap increases infi-

nitely. Fig. 5 shows that the torsional added inertia of moment

coefficient of the square section converges to an asymptotic

value, 0.2757 of Eq. (20). The torsional added inertia of

moment of a square section concentrically placed in a square

liquid-filled rigid tube will infinitely be an asymptotic value

according to an increase of the liquid gap.

Fig. 8 e Four-square-section model coupled with a liquid

gap.

Fig. 9 e Finite element analysis model of four square sections coupled with a liquid gap.
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Fig. 10 e Added mass coefficients of four square sections

submerged in a square container.
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3.3. Diagonal motion

Although the added mass of a circular section does not

depend on the moving direction, the added mass of a square

section depends on the oscillating direction. A schematic

analysis model of a square section in a liquid with a diagonal

movement is demonstrated in Fig. 6. The same process as

described in Section 3.1 was carried out to estimate the added

mass coefficient of a square section in a liquid with respect to

the diagonal movement. Natural frequencies and added mass

coefficients are estimated for various liquid gaps, and the

added mass coefficient of the liquid for the diagonal move-

ment of the square section is plotted in Fig. 7 as a function of

the liquid gap ratio. The diagonal added mass coefficient also

decreases with the liquid gap and finally converges at a spe-

cific value for an infinite liquid. The added mass coefficient

can be approximated with an exponential curve fitting:

Cmd ¼ 7:08273þ 741:4387 Exp

�
0:01483� h

0:01818

�

þ 87671:07157 Exp

�
0:01483� h

0:00366

�

þ 70:86796 Exp

�
0:01483� h

0:13542

�
(21)

4. Applications and discussion

4.1. Four square sections

A liquid-coupled system of four square sections in a rigid

container is illustrated in Fig. 8. The square sections are

identical in dimensions and material properties, and each

section is connected with a separated identical lateral spring

(spring constant k). The liquid gap between the sections and

rigid walls has the same dimensions (c). The 2D square sec-

tions connected with springs can simulate the bending mo-

tion of square cylinders such as fuel assemblies. To

investigate the coupling effect of the four square sections,

finite element analyseswere carried out for several liquid gaps

using ANSYS (ANSYS, Inc.). Fig. 9 shows a 2D finite element

model meshed with an equal sized 2D solid structure element

(PLANE182) and 2D fluid element (FLUID29). The material

properties of the system are identical to the case of a single

square section.

Several modes were observed owing to the coupling effect

of the liquid. Natural frequencies and mode shapes were

extracted, and added mass coefficients were estimated using

Eq. (9). They are also plotted as a function of the gap ratio, as

illustrated in Fig. 10. Each added mass coefficient in a narrow

liquid gap shows a large difference, whereas it converges

(A) (B)

(C) (D)

Fig. 11 e Coupled mode shapes of four square sections submerged in a liquid-filled square container. (A) First mode. (B)

Second mode. (C) Third mode. (D) Fourth mode.
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to the added mass coefficient value of a single square section

submerged in an infinite liquid as the liquid gap increases. It

is generally well known that the added mass coefficient de-

creases for the liquid gap owing to a squeeze effectmitigation.

It is remarkable that the added mass coefficient of the fourth

mode decreases as the gap ratio increases, until a certain gap

ratio, but gradually increases to the added mass coefficient

value of a single square section submerged in an infinite

liquid. Fig. 11 shows the coupled mode shapes of four square

sections. Several combinations of the in-phase and out-of-

phase modes are presented. The first one is an out-of-phase

mode, in which both the upper and the lower square section

oscillate such that they aremoving in opposite directions. The

second one is an in-phase mode, in which both the upper and

the lower square section oscillate in the same direction. The

Fig. 12 e Nine-square-section model coupled with a liquid

gap.

Fig. 13 e Finite element analysis model of nine square sections coupled with a liquid gap.
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Fig. 14 e Added mass coefficients of nine square sections

submerged in a liquid-filled square container.
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third and fourth ones show, respectively, the out-of-phase

and in-phase modes laterally with the vertical out-of-phase

oscillation. It is clear that the liquid-coupled system is prone

to be excited with the in-phase mode (2nd mode) with respect

to a lateral excitation, such as an earthquake. By contrast, the

liquid-coupled system can be excited with any modes shown

in Fig. 11, with respect to the propagated excitation such as a

pump pulsation.

4.2. Nine square sections

A liquid-coupled system of nine square sections in a rigid

container is illustrated in Fig. 12. The square sections are

identical in dimensions and material properties, and each

section is connected with a separated identical lateral spring

(spring constant k). The liquid gap between the sections and

rigid walls has the same dimensions (c). The 2D square sec-

tions connected with springs can simulate the bending mo-

tion of a bundle of square beams. To investigate the coupling

effect of the nine square sections, finite element analyses

were carried out for several liquid gaps using ANSYS (ANSYS,

Inc.). Fig. 13 shows a 2D finite element model meshed with an

equal size of a 2D solid structure element (PLANE182) and 2D

fluid element (FLUID29). Material properties of the system are

also identical to the case of a single square section.

Various coupled vibration modes were observed owing to

the dynamic coupling effect of the liquid. The added mass

coefficients of the coupled modes are also plotted as a func-

tion of the gap ratio, as illustrated in Fig. 14. Each added mass

coefficient in a narrow liquid gap shows a large divergence,

whereas it converges to the added mass coefficient value of a

single square section submerged in an infinite liquid as the

(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

Fig. 15 e Coupled mode shapes of nine square sections submerged in a liquid-filled square container. (A) First mode. (B)

Second mode. (C) Third mode. (D) Fourth mode. (E) Fifth mode. (F) Sixth mode. (G) Seventh mode. (H) Eighth mode. (I) Ninth

mode.
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liquid gap gets large enough. It is generally well known that

the addedmass coefficient decreases for a liquid gap owing to

a squeeze effect. It is remarkable that the added mass co-

efficients of the seventh, eighth, and ninth modes decrease

according to the increase in the gap ratio, until a certain gap

ratio, but gradually increase up to the added mass coefficient

value of a single square section submerged in an infinite

liquid. Fig. 15 shows the coupled mode shapes of nine square

sections. Several combinations of in-phase, out-of-phase, and

rotational modes are presented. The mode shapes of the nine

square sections are more complicated than those of four

square sections. The first mode oscillates with all out-of-

phase movement in the x direction, but it maintains all in-

phase movement in the y direction. The second one shows

an out-of-phase mode, in which the six peripheral sections

oscillate with all out-of-phase movement in the x direction,

but maintains all in-phase movement in the y direction,

whereas the central three sections are all stationary. The third

one is an in-phasemode, in which all square sections oscillate

in the same direction. The other ones show a combination of

the out-of-phase and in-phase modes. It is remarkable that

the fifth and eighth modes show y-directional movement of

specific sections in spite of the x-directional vibration system.

Generally, the specific x-directional movement of adjacent

sections can induce the x-directional movement of other

sections. Exceptionally, the eighth one shows a rotational

mode with respect to the center of the system in spite of a

laterally connected springemass system. This is caused by the

coupling effect phenomenon of the liquid. It is clear that the

liquid-coupled system is prone to excitationwith the in-phase

mode (3rd mode) with respect to a lateral excitation such as an

earthquake. Conversely, the liquid-coupled system can be

excited with any modes of Fig. 15 with respect to the propa-

gated excitation such as a pump pulsation.

5. Conclusions

To estimate the added mass of a square beam, the free vibra-

tion of single or multiple square sections contained in a liquid-

filled rigid square container, with respect to translational, di-

agonal, and rotation motions, was investigated. In this study,

natural frequencies of square sections were obtained as a

function of gap size between the square section and the rigid

squarewall using the commercial finite element analysis code.

Natural frequencies of a single square section decrease owing

to the hydrodynamic mass contribution to the movement of a

square section regardless of the moving direction. It is evident

that the contribution of the added mass to the section is the

largest for a diagonal movement, whereas the added mass

effect on the section is smallest for a rotational movement.

Dynamic coupling of square sections was also investigated for

multiple square sections. Multiple added mass coefficients

were extracted based on the liquid coupling effect. The added

mass coefficient for the in-phase mode might be useful in

applying the seismic response among the various coefficients.

The suggested added mass estimation can be applicable to the

spent fuel storage of a pressurized light water modulated nu-

clear power plant.

The correlation between in-phase and out-of-phasemodes

and the coupling effect of 3Dmultiple structures coupled with

a liquid will be studied in further research to show more

realistic engineering applications.
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