• Title/Summary/Keyword: adaptive identification

Search Result 416, Processing Time 0.033 seconds

Power system stabilization via adaptive feedback linearization (비선형 적응제어를 이용한 전력계통 안정화)

  • 윤태웅;이도관
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1221-1224
    • /
    • 1996
  • As in most industrial processes, the dynamic characteristics of an electric power system are subject to changes. Amongst those effects which cause the system to be uncertain, faults on transmission lines are considered. For the stabilization of the power system, we present an indirect adaptive control method, which is capable of tracking a sudden change in the effective reactance of a transmission line. As the plant dynamics are nonlinear, an input-output feedback linearization method is combined with an identification algorithm which estimates the effect of a fault.

  • PDF

Fuzzy adaptive control with inverse fuzzy model (역퍼지 모델을 이용한 퍼지 적응 제어)

  • 김재익;이평기;전기준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.584-588
    • /
    • 1991
  • This paper presents a fuzzy adaptive controller which can improve the control policy automatically. Adaptation is achieved by the addition of on-line identification of the fuzzy inverse model using input-output data pairs of the process. Starting with an initial crude control rule, the adaptive controller matches the model to the process to self-tune the controller. The control algorithm needs much less memory of computer than other SOC algorithms.

  • PDF

A study on the combined direct and indirect approach to adaptive system (적응제어에서 직접 및 간접 방식의 결합에 관한 연구)

  • 송호석;이기서
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.489-493
    • /
    • 1989
  • In this paper a new approach to adaptive control using a combination of both direct and indirect methods has been proposed. Based on the estimates of the plant parameters and the current values of the control parameters, closed-loop estimation errors .epsilon.$_{\theta}$(t) and .epsilon.$_{k}$(t) are defined. These in turn are used in the adaptive laws for updating both identification as well as control parameters. The global uniform stability of the overall system is shown by constructing a Lyapunov function.n.

  • PDF

Model Reference Adaptive Control for Linear System with Improved Convergence Rate-parameter Adaptation Method (선형시스템을 위한 개선된 수렴속도를 갖는 기준모델 적응제어)

  • Lim, Kye-Young
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.12
    • /
    • pp.884-893
    • /
    • 1988
  • Adaptive controllers for linear unknown coefficient system, that is corrupted by disturbance, are designed by parameter adaptation model reference adaptive control(MRAC). This design is stemmed from the Lyapunov direct method. To reduce the model following error and to improve the convergence rate of the design, an indirect-suboptimal control law is derived. Proper compensation for the effects of time-varying coefficients and plant disturbance are suggested. In the design procedure no complete identification of unknown coefficients are required.

  • PDF

Model Reference Adaptive Control for Linear System with Improved Convergence Rate -SIGNAL SYNTHESIS METHOD- (선형시스템을 위한 개선된수렴속도를 갖는 기준모델 적응제어기- SYNTHESIS METHOD)

  • Lim, Kye-Young
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.10
    • /
    • pp.733-739
    • /
    • 1988
  • Adaptive controllers for linear system whose nominal values of coefficients only are known, that is corrupted by disturbance, are designed by signal synthesis model reference adaptive control (MRAC). This design is stemmed from the Lyapunov direct method. To reduce the model following error and to improve the conrergence rate of the design, an indirect suboptimal control law is de rived using the Hamilton Jacobi Beellman equation. Proper compensaton for the effects of time varying coefficients and plant disturbance are suggested. In the design procedure no complete identification of unknown coefficients are required.

  • PDF

A Study on the System Identification based on Neural Network for Modeling of 5.1. Engines (S.I. 엔진 모델링을 위한 신경회로망 기반의 시스템 식별에 관한 연구)

  • 윤마루;박승범;선우명호;이승종
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.29-34
    • /
    • 2002
  • This study presents the process of the continuous-time system identification for unknown nonlinear systems. The Radial Basis Function(RBF) error filtering identification model is introduced at first. This identification scheme includes RBF network to approximate unknown function of nonlinear system which is structured by affine form. The neural network is trained by the adaptive law based on Lyapunov synthesis method. The identification scheme is applied to engine and the performance of RBF error filtering Identification model is verified by the simulation with a three-state engine model. The simulation results have revealed that the values of the estimated function show favorable agreement with the real values of the engine model. The introduced identification scheme can be effectively applied to model-based nonlinear control.

Sensorless Control of PM Synchronous Motor Using Adaptive Observer (적응 관측기를 이용한 영구자석 동기전동기의 센서리스 제어)

  • 홍찬호;윤명중
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.60-63
    • /
    • 1997
  • A new approach to the position sensor elimination of PM synchronous motor drives is presented in this study. Using the position sensing characteristics of PMSM itself, the actual rotor position as well as the machine speed can be estimated by adaptive flux observer and used as the feedback signal for the vector controlled PMSM drive. The adaptive speed estimation is achieved by model reference adaptive technique. The adaptive laws are derived by the Popov's hyperstability theory and the positivity concept. In order to verify the effectiveness of the proposed scheme, computer simulations are carried out for the actual parameters of a PM synchronous motor and the results well demonstrate that the proposed scheme provides a good estimation value of the rotor speed without mechanical sensor. It is also shown that the actual rotor position as well as the machine speed can be achieved under the variation of the magnet flux linkage. Since the flux linkages are estimated by the adaptive flux observer and used for the identification of the rotor speed, robust estimation of the rotor speed can be performed.

  • PDF

Adaptive Vector Control for Induction Motor Using Block Adaptive Algorithm (블록 적응알고리즘을 이용한 유도전동기 적응벡터제어)

  • 박영산;조성훈;배철오;이성근;김윤식
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.324-329
    • /
    • 1999
  • This paper proposes new torque control of an induction motor, which is robust against time verying parameters. The control is based on adaptive vector control with serial block adaptive algorithm. Motor parameters used to estimates slip frequency and torque. Frequency mismatch in the control system detrimentally affects slip frequency estimation and torque response. In order to compensate for degradation of the responses an adaptive identifier for the magnetizing inductance and the secondary time constand is introduced. adaptive vector control system consisted of two subsystems, a vector control system realized on synchronous frame and a parameter identification system on stationary frame. the effectiveness of the proposed method was verified by some digital simulations.

  • PDF

Robust Control of Robot Manipulator using Self-Tuning Adaptive Control (자기동조 적응제어기법에 의한 로봇 매니퓰레이터의 강인제어)

  • 뱃길호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.150-155
    • /
    • 1996
  • This paper presents a new approach to the design of self-tuning adaptive control system that is robust to the changing dynamic configuration as well as to the load variation factors using digital signal processors for robot manipulators. TMS3200C50 is used in implementing real-time adaptive control algorithms provide advanced performance for robot manipulator. In this paper an adaptive control scheme is proposed in order to design the pole-placement self-tuning controller which can reject the offset due to any load disturbance without a detailed description of robot dynamics. parameters of discrete-time difference model are estimated by the recursive least-square identification algorithm and controller parameters are detemined by the pole-placement method. Performance of self-tuning adaptive controller is illusrated by the simulation and experiment for a SCARA robot.

  • PDF