• Title/Summary/Keyword: adaptive control law

Search Result 315, Processing Time 0.027 seconds

Robust adaptive fuzzy controller for an inverted pendulum

  • Seo, Sam-Jun;Kim, Dong-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1267-1271
    • /
    • 2003
  • This paper proposes an indirect adaptive fuzzy controller for general SISO nonlinear systems. No a priori information on bounding constants of uncertainties including reconstruction errors and optimal fuzzy parameters is needed. The control law and the update laws for fuzzy rule structure and estimates of fuzzy parameters and bounding constants are determined so that the Lyapunov stability of the whole closed loop system is guaranteed. The computer simulation results for an inverted pendulum system show the performance of the proposed robust adaptive fuzzy controller.

  • PDF

Adaptive Approaches on the Sliding Mode Control of Robot Manipulators

  • Park, Jae-Sam;Han, Gueon-San;Ahn, Hyun-Sik;Kim, Do-Hyun
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.15-20
    • /
    • 2001
  • In this paper, adaptive algorithms on the sliding model control for robust tracking control of robust manipulators are presented. The presented algorithms use adaption laws for tuning both the sliding mode gain and the thickness of the boundary layer to reject a disconitnuous control input, and to improve the tracking performance. It is shown that the robustness of the developed adaptive algorithms are guaranteed by the sliding mode control law and that the algorithms are globally convergent in the presence of disturbances and modeling uncertainties. Computer simulations are performed for a two-link manipulator, and the results show good properties of the proposed adaptive algorithms under large mainpulator parameter uncertainties and disturbances.

  • PDF

Design of Neural Network Adaptive Control Law for Aircraft System Including Uncertainty

  • Kim, You-Dan;Shin, Dong-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.125.3-125
    • /
    • 2001
  • Recently, aircraft is designed to have high maneuverable at high angle of attack. However, it is very hard to obtain the accurate dynamic model for the high performance, because aerodynamic characteristics are nonlinear and include a lot of uncertainties. Therefore, nonlinear controller without considering uncertainties may degrade the control system performance. On this paper, to overcome these defects, the neural networks based adaptive nonlinear controller is proposed making use of the backstepping technique. Neural networks are implemented to guarantee robustness to uncertainties caused by aerodynamic coefficients variation. The main feature of the proposed controller is that the adaptive controller is developed under the assumption ...

  • PDF

Model Reference Adaptive Control for Linear System with Improved Convergence Rate-parameter Adaptation Method (선형시스템을 위한 개선된 수렴속도를 갖는 기준모델 적응제어)

  • Lim, Kye-Young
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.12
    • /
    • pp.884-893
    • /
    • 1988
  • Adaptive controllers for linear unknown coefficient system, that is corrupted by disturbance, are designed by parameter adaptation model reference adaptive control(MRAC). This design is stemmed from the Lyapunov direct method. To reduce the model following error and to improve the convergence rate of the design, an indirect-suboptimal control law is derived. Proper compensation for the effects of time-varying coefficients and plant disturbance are suggested. In the design procedure no complete identification of unknown coefficients are required.

  • PDF

Model Reference Adaptive Control for Linear System with Improved Convergence Rate -SIGNAL SYNTHESIS METHOD- (선형시스템을 위한 개선된수렴속도를 갖는 기준모델 적응제어기- SYNTHESIS METHOD)

  • Lim, Kye-Young
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.10
    • /
    • pp.733-739
    • /
    • 1988
  • Adaptive controllers for linear system whose nominal values of coefficients only are known, that is corrupted by disturbance, are designed by signal synthesis model reference adaptive control (MRAC). This design is stemmed from the Lyapunov direct method. To reduce the model following error and to improve the conrergence rate of the design, an indirect suboptimal control law is de rived using the Hamilton Jacobi Beellman equation. Proper compensaton for the effects of time varying coefficients and plant disturbance are suggested. In the design procedure no complete identification of unknown coefficients are required.

  • PDF

A Study on Adaptive Converter Control Approach for Velocity Control of Electric Motors with Photovoltaic Power Generators (태양광 발전 기반 전동기 속도 제어를 위한 적응형 컨버터 제어 기법에 관한 연구)

  • Park, Sung Won;Kim, Dong Wan;Cho, Hyun Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1400-1406
    • /
    • 2016
  • This paper presents a new adaptive converter control approach for electric motor systems whose voltage source is excited from photovoltaic (PV) power generators. First, an electric model is represented with dynamic states and output velocity of such DC motor systems. We propose a hybrid converter control law in which a state feedback control is applied as an auxiliary control framework. Moreover, control parameter estimation is derived to realize adaptive converter systems for effective control performance against stochastic PV power excitation in practice. We carry out stability analysis for such converter system by using a well-known eigenvalue theory. Lastly, numerical simulation is conducted to test reliability of the proposed converter control approach and prove its superiority in the control point of view.

On the Synthesis of Robot Manipulator using Adaptive Control (적용제어에 의한 로보트매니퓰레이터 설계)

  • Lee, Si-Bok;Lee, Man-Hyung;Park, Jong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.3 no.1
    • /
    • pp.50-59
    • /
    • 1986
  • Adaptive Model Following Control (AMFC) technique is applied to develop a robot manipulator control system, which can deal successfully with the complex dvnamics of the manipulator. Main concerns of this study are put on the problem reducing the chatter amplitude of control signal yielded by the unit vector control law that was proposed [10] previously for AMFC of the manipulatro, and the effect- iveness of the algorithm when implemented practically. To see the effectiveness of modified method, computer simulations using new and old control law are carried out and compared, and the modified one id implemented in RHINO XR-II robot system recon- structed partially to enable torque control.

  • PDF

Direct Adaptive Fuzzy Sliding Mode Control for Under-actuated Uncertain Systems

  • Su, Shun-Feng;Hsueh, Yao-Chu;Tseng, Cio-Ping;Chen, Song-Shyong;Lin, Yu-San
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.240-250
    • /
    • 2015
  • The development of the control algorithms for under-actuated systems is important. Decoupled sliding mode control has been successfully employed to control under-actuated systems in a decoupling manner with the use of sliding mode control. However, in such a control scheme, the system functions must be known. If there are uncertainties in those functions, the control performance may not be satisfactory.In this paper, the direct adaptive fuzzy sliding mode control is employed to control a class of under-actuated uncertain systems which can be regarded as a combination of several subsystems with one same control input. By using the hierarchical sliding control approach, a sliding control law is derived so as to make every subsystem stabilized at the same time. But, since the system considered is assumed to be uncertain, the sliding control law cannot be readily facilitated. Therefore, in the study, based on Lyapunov stable theory a fuzzy compensator is proposed to approximate the uncertain part of the sliding control law. From those simulations, it can be concluded that the proposed compensator can indeed cope with system uncertainties. Besides, it can be found that the proposed compensator also provide good robustness properties.

Adaptive Sliding Mode Control for Compensation of Uncertainty in Feedback Linearized Skid-to-Turn (STT) Missiles (궤환선형화된 STT 미사일의 불확실성 보상을 위한 적응 슬라이딩 모드 제어)

  • 김민수;좌동경;최진영
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.267-274
    • /
    • 1999
  • This paper proposes an adaptive sliding mode control scheme for an autopilot design of Skid-to-Turn (STT) missiles. The feedback linearization controller eliminates nonlinear terms in STT dynamics and makes the entire system linear. But the modeling errors in dynamics and the external disturbances exert bad influence on the performance of the feedback linearization controller. To handle these uncertainties, an adaptive control scheme is developed, where a bound of the uncertainties is estimated by an adaptive law based on a sliding surface. The asymptotic output tracking is proved by using the Lyapunov stability theory. Simulations for STT missiles illustrate the validity of the proposed scheme.

  • PDF

Adaptive High Precision Control of Dynamic System Using Friction Compensation Schemes (마찰력 보상 기법을 이용한 동적 시스템의 고 정밀 적응제어)

  • Jeon, Buyng-Gyoon;Jeon, Gi-Joon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.10
    • /
    • pp.555-562
    • /
    • 2000
  • We propose an adaptive nonlinear control algorithm for compensation of the stick-slip friction in a dynamic system. The friction force and mass of the system are estimated and compensated by adaptive control law. Especially, as the nonlinear control input in a small tracking error zone is enlarged by the nonlinear function, the steady state error is significantly reduced. The proposed algorithm is a direct adaptive control method based on the Laypunov stability theory, and its convergence is guaranteed under the bounded noise or torque disturbance. We verified the performance of the proposed algorithm by computer simulation on one-DOF mechanical system with friction.

  • PDF