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Adaptive Approaches on the Sliding Mode Control of
Robot Manipulators

Jae-Sam Park, Gueon-Sang Han, Hyun-Sik Ahn, and Do-Hyun Kim

Abstract: In this paper, adaptive algorithms on the sliding mode control for robust tracking control of robot manipulators
are presented. The presented algorithms use adaptation laws for tuning both the sliding mode gain and the thickness of the
boundary layer to reject a discontinuous control input, and to improve the tracking performance. It is shown that the robustness
of the developed adaptive algorithms are guaranteed by the sliding mode control law and that the algorithms are globally
convergent in the presence of disturbances and modeling uncertainties. Computer simulations are performed for a two-link
manipulator, and the results show good properties of the proposed adaptive algorithms under large manipulator parameter

uncertainties and disturbances.
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L. Introduction

In recent years, methodology known as sliding mode
control has been researched actively, and the sliding mode
control has effectively used in the tracking control of robot
manipulators by many researchers[2][3][5][6]. The concept
of sliding mode control has been studied in detail in [1][7]
[8] where it has been used to stabilize a class of non-linear
systems.

For faster manipulator dynamics in the presence of model
uncertainties such as parameter perturbations, unknown joint
frictions and inertias, and external disturbances, various
types of adaptive sliding mode controllers have been
developed to alter the control signal to account for changes
in robot dynamics and disturbances in the environment, so
as to improve the overall performance of the conventional
sliding mode control algorithms, for example [3][6]. The
algorithm in [3] uses the adaptation law for tuning the
boundary layer of sliding mode controller. Another in [6],
the adaptation law is applied to a sliding mode control
algorithm to have the sliding mode gain adjusted
continuously during operation.

In this paper, a new type of adaptive sliding mode
controller, which tunes both the sliding mode gain and the
boundary layer thickness, for robust tracking control of
robot manipulators is presented. The algorithm uses
adaptation laws for tuning both the sliding mode gain and
the thickness of the boundary layer to reject a discontinuous
control input, and to improve the tracking performance of
the manipulator. It is shown that the robustness of the
developed adaptive algorithms are guaranteed by the sliding
mode control law and that the algorithms are globally
convergent in the presence of disturbances and modeling
uncertainties.

The proposed algorithm has advantages that 1) it tunes
both the thickness. of a boundary layer and the sliding mode
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gain for sliding mode controller. Therefore, the tracking
performance can be improved, it is good for rejection of
control chattering phenomenon, and fairly large parameter
variation and disturbances can be handled. ii) the adaptation
laws of the proposed scheme are simple both for the gain
adaptation and the boundary layer adaptation. Thus the
computational load required is roughly same as that of a
PID controller. Therefore the proposed scheme is easy to
implement to a real-time control with no extra high cost.

The proposed adaptive algorithms are applied to a
two-link robot manipulator and computer simulations are
performed. The simulation results show the good properties
of the developed schemes.

The organization of this paper is as follows: section 2
gives some mathematical formulations which will be useful
to develop the adaptive sliding mode control algorithm for
manipulators; section 3 and section 4 present adaptive
sliding mode control algorithms; section S contains the
computer simulation results for the proposed adaptive
sliding mode control algorithms which show that the
proposed algorithms possess good properties under large
manipulator parameter uncertainties and disturbances;
section 6 concludes the paper.

I1. Problem formulation

Consider the rigid body dynamic n-link manipulator
derived via the Euler-Lagrange equations [4]:

M(q) g+ a, D+l = o8 )
g, @ = Vg, 9 +Dg+G(g

where g R” and g R" are joint angle and angular

velocity, respectively. M(g)=M " (g)e R™

n

is the inertia
matrix, which is symmetric, positive definite. V(g, gy R”
contains centrifugal and Coriolis terms. Dg and G(q)

describe viscous friction and gravity, respectively. For
simplicity, these terms are combined and expressed as

g, @ in (1)
disturbances, such as static friction or Coulomb friction.

;€ R" represents the unknown

re R” is the vector of input torques.
In joint space, the control problem for robot manipulators
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is to synthesize a control law for the torques such that the
joint output, ¢(# € R", traces the desired trajectory,
afDe R”, with a certain precision defined by

a=[q a7, ldi=lg—adl<n, )
lall=1lg— aall<7s, 7>0, 72>0.

It is assumed that g, g% and ¢,(9 are well defined
and bounded for all operational time ¢

Generally, the transient dynamics of SMC(Sliding Mode
Control) consists of two conditions: a reaching condition
and a sliding condition. Under the reaching condition, the
desired response aims to reach the switching manifold in
finite time. The switching manifold Z is written as

Z={aqlz( 4)=0} 3)
where 2z denotes a switching function,
z=g+id )

with A= diag(A;,A3,,A,), 420,

Parameters of the switching manifold dominate the
dynamic behavior of the system during sliding mode
control. The Lyapunov function approach is one of methods
for specifying reaching condition or the sliding condition.
The reaching condition or the sliding condition is obtained
as [7]

%szS — 7l (5)

1
2

where 7 is strictly positive and constant.
From (1) and (4), we have z2=M r—h—1t4)— g4+ 14 ,

or
Mz=MAg— dy) +r— h—14 (6)

Lemma 1: Suppose that M>0 is a bounded differentiable
matrix function of ¢ and r, is bounded on g¢. Then, there

exists constant 7> such that
SIMA G~ i)~ h—td+5 2" Me<onldl, Vo, @ (D)
with
¢=1+|l2ll +l2ll*. ®
Proof: It is well known that M is positive definite and
a bounded differentiable matrix function of ¢, W(g, @) is

a function at most quadratic in g, and the gravitation G(q)
is bounded. Note that 7, is a function of at most first order

in 4. Noting that ¢, and g, are bounded, we have that
g and g are bounded on ||g|| and || all respectively. From
(4), g=z—Ag and thus g(s)=[1— T(s)]z(s) with
T(s)= A(sI+2) ~!. Denote the H. norm of a stable
transfer function by || -|lo. Then, it follows that
Il @l<lldl + I Tllallall. Since  T(s) is stable, [Tl is

bounded and thus || gl| is bounded on ||z|l. This in turn

implies that ¢ is bounded on z. Since M is a bounded
differentiable function of g, M is bounded on g.
Therefore, it is clear that there exist bounded nonlinear
functions  4(9, /1(#), fo(H = R such that

2 IM(Ag— a5)—h— rd]—i——%zTMz

< (6 + AWM+ L)1z, Va, g.

Let 7= max( 5% l6all, S 1AL P lIADN).
Then, clearly (7) holds.

III. Adaptive sliding mode control
In this section, we propose an adaptive sliding mode
control law for the uncertain system (1). The control law is
designed as
Algorithm 1: Adaptive sliding mode control law

T = —klz—us, k1>0
drgp if llal>e

u, = ;1>e>0 ®
¢77—z€' otherwise

[

— a7+ Belldl, 1>a>0, B0, 72(0)=0
with ¢ defined by (8). In (9), we see that u, is the

sliding-mode torque vector with z as the sliding surface and

7

gain 7 is adjusted adaptively such that 7>7 , where 7
defined by Lemma 1. Then, we have the following result.
Theorem 1: Consider the system (1) with the control law
(9). The closed-loop system is globally stable in the sense
that 7 is bounded and
a) z is globally bounded by
llzdl < epos(n— 7+1<e (10)

where

= _[7=a+1, if 73—+ DO
pos (7 7l+1)—{0 otherwise an

b) the tracking error g is globally bounded by

Idl < % pos(p— 7+ D)< (12)

Proof: Choose the Lyapunov candidate function

v=g Mt T W =0 (13)

From (6), the time derivative of the function (13) along the
trajectories of (1) is

2 Mz+2"Mz+ 3 9/8 (14)

<.
Il

2 Met2 [ M(AG— q)—h—ta+cl+ 7 98

When ||zll>e, 2 u,= ¢7llzll from (9), and from Lemma

1, v can be expressed as
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v < gollzll — kAP - d7lldl+ 7 /8
(15)
= v < $ylldl—klladl*— dnllall+(— a7+ Bollall) ™ 7/ 8
= o< —hkldiP-a7 (3—n/8
Note that a@z=>0. Thus ¢ and B are chosen so that 7 is
adjusted (adapted) to satisfy 7>z whenever |z]|>e. Then,
for any (Il with ||2|>e, ©<0. This implies that ||2|| is
bounded by llzll<e(1.
Thus, after the transient response, ||zll<e<(]. In this case,

from (9), z u,= $l|zll*/e. Then, ¢ can be expressed as

v < grllall =kl ~galaYe+r 7 78 a6

=v < ¢ylldl — klld>— 7lldl*/ e+ (—an+ Bolld) T 7/ 8
=i < —klld?+ gyl -2 57 G-y,

From (16), we see that if ¢ and £ are chosen to satisfy

%2¢H2H (note that |lz|<e<1), then o< —(k|lzDIl4l,

which satisfies the sliding condition of (5), for all
1-1dl G-y = > G-F+ne. (7
This implies that z is bounded by

llzl < epos(7—7+1) (18)

where pos( -) is defined by (11). Note that z=7z, thus
pos (n— 7+ 1)<1. From (9), we see that 7 is decreasing
when A4(2l1< a7 and vise versa. Thus, « and A are chosen
to satisfy B¢llzll< a7 whenever z is bounded by (18), then
7 is bounded. Therefore, we can conclude that 2] is
globally bounded by (10).

From the definition of the switching surface (4), the
tracking error ¢ can be obtained from the first order filter
relationship

¢
a= jo e "9 Ddr. 19)

From (18), (19) can be expressed as -

— t
1)l < epos(p~7+1) [le X 7dr 0
= llall = % pos(r=7+1)(I—e )< pos (7= 7+1).

Therefore, |lg|| is globally bounded by (12).

IV. Time varying thickness of the boundary layer
Note that (9) is an adaptive sliding mode control

algorithm with an adaptively adjusted gain 77, and with z
as the sliding surface.

It is known [7] that while sliding mode control has good
robustness, the control law has to be discontinuous across
z(#). So, the thickness of the boundary layer £5( is chosen
to eliminate the chattering of the control law. With the
control algorithm of (9), small tracking errors can be
achieved by choosing a small . However, small ¢ will

usually result in undesirable vibration on the control signal
when 7 is large. A reasonable way to choose ¢ is to set
it large when |{zl| is large and to set it small when ||z|| is
small. This motivates the use of a time-varying thickness( & )
of the boundary layer.

From this section, we denote the boundary layer thickness

& as ¢, which means the estimated boundary layer

thickness. When ||z||=, we need to guarantee that the
distance to the boundary layer always decrease. Thus, the
condition (5) needs to be modified to satisfy[7]

lzll22 = 5 2Tz<(z= Dl 1)
By comparing (21) and (5), we see that the sliding mode
gain 7 of (9) should be replaced with

$r=dn—¢ = p=1—9¢ ‘e (22)

We see from (22) that the varying pattern of the thickness

& is closely related with that of 7. Thus we can suggest
following control law and adaptation law
Algorithm 2: Self-tuning of the boundary layer thickness

T = —kgz—uas, k2>0
S it >
Uy =
¢?7% otherwise
)7\7 = _a’l%+ﬁl¢”2” (23)

~ ~

{ =2(0), e=—a e+ Byd7 it 2> 2(0)

E=—ay et B, otherwise

with 1>2,50, 80, 2(0) =0,
1>ay>0, B0, 1>e(0)>0
where sat( - ) is defined by (10).

Theorem 2: Consider the system (1) with the control law
(23). The closed-loop system is globally stable in the sense

that 7 and ‘¢ are bounded and
a) z is globally bounded by

2l < eposln—(1+8)7+1+ag 'e] < & (24)

b) the tracking error g is globally bounded by
lall < 5 posln—(1+8)n+1+as el < £ (29)

where pos ( + ) is defined by (14).

Proof: Choose the Lyapunov candidate function with 7
is derived from (23) as

~ —_ _l/\ ~ -1~ (26)

1=n—a=7t¢ e—n =(1+B)p—ard e—7.
In (23), we see that  is the output of 1'st order filter with
7 as an input. If a,, 3, are chosen carefully so that & is

not changed drastically, then we can let Zxo and thus
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£

7=7.  When |[lgl=%,  from (9) we have that
2" u = ¢7l2}, and from Lemma 1, v can be expressed as

v = '%ZT Mz+2"Mi+ 5 9/8 Q@7

52" Mz+2 [ MGi— i) —h—z, +11+ 7 /8

b < ylldl— kil — g7l + % 9/8

= v < (e—hlldldl—ay 7 [(1+8) 59— ard ™2~ 5l/B

In (23), «; and gB; are chosen so that 7 is adjusted
(adapted) to satisfy 7 >(p+a,¢™'@)/(1+ 4, for any |||
and 3 with 7 o< (e—hlladDll. This implies that
llzll is bounded by |lz]<&<]1.

Thus, after the transient response, [|z|<&<1. In this case,

v can be expressed as

L, Mz+2 [ M(Ag— 4)—h—r4+ 2]+ ;/T 2/ 61

3
i

2
< gyllall— kylldiZ— #3712 5+ 5 978
. A ~ §“ ay AT (28)
=v < (‘e— k2Dl + ¢7llzll(I— 2 )——E 7

[(1+8)7—ar™ e — ).

In (28), we see that if @, and B, are chosen to satisfy

;—;Zq&nzn (note that llzli<e), then o< (&—Alldllial,

which satisfies the sliding condition of (21), for ail

1—1%1 1+ B)9—ae—7

S D [7= A+ B+ e~ e +11E @)

This implies that z is bounded by
lldl < = posln—(1+8)n+1+az67'el  (30)

with  pos(-) defined by (11). Note from (29) that
posin—(1+8)7+1+a¢ ' l<1. From (23), we see
that 7 is decreasing when g dllzll<a,7 and vise versa.
Thus, a; and B, are chosen to satisfy pBigllzll<a,7
whenever z is bounded by (30), then 7% is bounded. Also
from (23), we see that z is reset as e= &()) whenever
2> &(0), which means % is bounded. Therefore, we can

conclude that ||2]| is globally bounded by (24).
From the definition of the switching surface (4), the

tracking error g can be obtained from the first order filter
relationship

t
G= fo e M9 Dr. G1)

~

From (30), |ldl < &- pos[7—(1+ )7+ 1+ ey el
thus (30) can be expressed as
llghh < - pos[7—(1+B)p+1+
ay¢ Vel fote “H=0gr
= ligll < &+ pos[7—(1+B)7+1+
aﬁf“e]([—e_’”)s%.

(32)

Therefore, |lq|| is globally bounded by (25).

With the adaptation law in (23), the sliding mode gain
and the thickness of the boundary layer are time-varying
and nonlinear. z is increasing or decreasing through a first
order filter according to 7. This results in a large ¢ when
the sliding mode gain is large and a small ¢ when the
sliding mode gain is small. Note that % is increasing or
decreasing according to [|2{|. Therefore, this control scheme
can supply a fast and robust correction to the control law.

V. Simulation results
A simple two-link robot manipulator shown in Figure 1
has been simulated, controlled by the adaptive sliding mode
control with self-tuning the boundary thickness algorithms
developed in this paper. The manipulator was modelled as
a set of nonlinear coupled differential equations as described
in [4]

0 = mbB( @1+ @) +mehbes(2 a1y ag)+(my+

w . 2 . .
mly Gy — mobilysy @y —2mplils; @1 ga+ (33)
mzlzqs 12+(m1+ m2)11g51 -

rn = mbi( @i+ @)+ malilocy G14 myhlosy ¢+ malags s

where ¢: =cos(gy), s =sinlg;+ ¢z, efc.
The desired trajectory had the form

1+0.2sin(xt)
1—0.2cos (xt)

qa

qa G4

It

for t={0,4], and the disturbance ¢, was added in the form
of

_ e[ sin(dxi)
Td_S[ sin(dzd] "’ (35)

Parameters used in the simulation were
11=[2=l m, m1=m2=lkg. (36)

While the manipulator was being operated, my and my
were changed from 1kg to 3kg and from lkg to 1.5kg
respectively at ¢=1 sec, and both link mass were changed
back to 1kg at ¢=4sec. The sampling time was set to

be 10 “¥sec and the plant initial states were set as
da=1, 42=0.8, ¢42=027r, gp=0. G0N

First, we applied the control algorithm 1 of (9) to the
system (33) with the controller parameters were chosen to
be

A=6L, p=2, =20, @=0.003, A=400, £=.05. (38)

The simulation resuits are shown in Figure 1: a) position
errors; b) control torques for each link of the manipulator;
c) the adaptation results of 7 ; and d) link trajectories. It
can be seen in Figure 2(a) and c) that the tracking errors

g were increasing due to the step change of m, and m;

at ¢=1sec, and that the sliding mode control gain 7 was
adjusted to reduce the tracking error. As a result, the
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tracking errors were decreased by the adaptiveness, and the
system eventually achieved the desired bounded tracking
errors for the given parameter changes.

¥
e (5}

T s 3 4
ume () ume ¢

() 7 (d) Link positions

Fig. 1. Simulation results under adaptive sliding mode
control Algorithm 1.

Next, we applied the control algorithm 2 of (23) to the
system (33) with the controller parameters were chosen to be

A=20, @,=0.021, 8, =45,
B0)=3, @;=0.005, 8,=0.05, $(0)=0.004. (39)

The simulation results are shown in Figure 2 : a) tracking
errors; b) control torques for each link of the manipulator;
¢) the adaptation results of 7 ; and d) the boundary layer
thickness & variation and z -trajectories. We see that the
tracking performance under algorithm 2 is much better than
that under algorithm 1, because varying both the sliding
mode control gain 7 and the thickness of the boundary
layer allow us to make better use of the available
bandwidth.

{b) Control toraues

{a) Position errors.

L@ {d) z and £ trajectories
r(a) Position errors Control torquesw—q

{7 e

\ .
ok i
N B

N 1
Ime &) tme(s)

© 7 (d) z and ‘trajectories

Fig. 2. Simulation results under adaptive sliding mode
control Algorithm 2.

Note that the simulation results achieved in the presence
of the disturbance of (34) over the interval (=[0,8],
indicate that the proposed algorithm worked effectively for
both the given parameter uncertainties and the disturbances.

VI. Conclusions

In this paper, adaptive algorithms which use adaptation
laws for tuning both the sliding mode gain and the thickness
of the boundary layer has been proposed to reject a
discontinuous control input, and to improve the tracking
performance. With this scheme, the tracking performance
can be improved, good for rejection of control chattering
phenomenon, and fairly large parameter variation and
disturbances can be handled.

It is shown that the robustness of the developed adaptive
algorithms are guaranteed by the sliding mode control law
and that the algorithms are globally convergent in the
presence of disturbances and modeling uncertainties.

The proposed adaptive algorithms are applied to a
two-link robot manipulator and computer simulations are
performed. The simulation results show the good properties
of the developed schemes, because varying both the sliding

mode control gain 7 and the thickness of the boundary

layer ¢ allow us to make better use of the available
bandwidth.
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