• Title/Summary/Keyword: actuator die

Search Result 25, Processing Time 0.031 seconds

Fabrication and Characteristics of a Piezoelectric Valve for MEMS using a Multilayer Ceramic Actuator (적층형 세라믹 엑추에이터를 이용한 MEMS용 압전밸브의 제작 및 특성)

  • 정귀상;김재민;윤석진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.5
    • /
    • pp.515-520
    • /
    • 2004
  • We report on the development of a Piezoelectric valvc that is designed to have a high reliability for fluid control systems, such as mass flow control, transportation and chemical analysis. The valve was fabricated using a MCA(multilayer ceramic actuator), which has a low consumption power, high resolution and accurate control. The fabricated valve is composed of MCA, a valve actuator die and an seat die. The design of the actuator dic was done by FEM(finite element method) modeling, respectively. And, the valve seat die with 6 trenches was made. and the actuator die, which possible to optimize control to MCA, was fabricated. After Si-wafer direct bonding between the seat die and the actuator die, MCA was also anodic bonded to the scat/actuator die structure. PDMS(poly dimethylsiloxane) sealing pad was fabricated to minimize a leak-rate. It was also bonded to scat die and stainless steel package. The flow rate was 9.13 sccm at a supplied voltage of 100 V with a 50 % duty ratio and non-linearity was 2.24 % FS. From these results, the fabricated MCA valve is suitable for a variety of flow control equipments, a medical bio-system, semiconductor fabrication process, automobile and air transportation industry with low cost, batch recess and mass production.

Fabrication of MCA Valve For MEMS (MEMS용 적층형 압전밸브의 제작)

  • Kim, Jae-Min;Yun, Jae-Young;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.129-132
    • /
    • 2004
  • This paper describes the design, fabrication and characteristics of a piezoelectric valve using MCA(Multilayer ceramic actuator). The MCA valve, which has the buckling effect, consists of three separate structures; MCA, a valve actuator die and an a seat die. The design of the actuator die was done by FEM modeling and displacement measurement, respectively. The valve seat die with 6 trenches was made, and the actuator die, which is driven to MCA under optimized conditions, was also fabricated. After Si-wafer direct bonding between the seat die and the actuator die, MCA was also anodic bonded to the seat/actuator die structure. PDMS sealing pad was fabricated to minimize a leak-rate. It was also bonded to seat die and SUS package. The MCA valve shows a flow rate of 9.13 sccm at a supplied voltage of 100 V with a 50 % duty cycle, maximum non-linearity was 2.24 % FS and leak rate was $3.03{\times}10^{-8}\;pa{\cdot}m^3/cm^2$. Therefore, the fabricated MCA valve is suitable for a variety of flow control equipment, a medical bio-system, automobile and air transportation industry.

  • PDF

Design, Fabrication and Characteristics of a MCA Valve (적층형 압전밸브의 설계, 제작 및 특성)

  • Chung, Gwiy-Sang;Kim, Jae-Min;Yoon, Suk-Jin;Jeong, Soon-Jong;Song, Jae-Sung
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.230-235
    • /
    • 2004
  • This paper describes the design, fabrication and characteristics of a piezoelectric valve using MCA(Multilayer ceramic actuator). The MCA valve, which has the buckling effect, consists of three separate structures; MCA, a valve actuator die and an a seat die. The design of the actuator die was done by FEM modeling and displacement measurement, respectively. The valve seat die with 6 trenches was made, and the actuator die, which is driven to MCA under optimized conditions, was also fabricated. After Si-wafer direct bonding between the seat die and the actuator die, MCA was also anodic bonded to the seat/actuator die structure. PDMS sealing pad was fabricated to minimize a leak-rate. It was also bonded to seat die and SUS package. The MCA valve shows a flow rate of 9.13 seem at a supplied voltage of 100 V with a 50% duty cycle, maximum non-linearity was 2.24% FS and leak rate was $3.03{\times}10^{-8}pa{\codt}m^{3}/cm^{2}$. Therefore, the fabricated MCA valve is suitable for a variety of flow control equipment, a medical bio-system, automobile and air transportation industry.

Fabrication of a Micro Multilayer Piezo Actuator Valve and Its Characteristics (마이크로 적층형 압전밸브의 제작과 그 특성)

  • Chung, Gwiy-Sang;Kimm, Jae-Min;Cho, Sang-Bock
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.913-916
    • /
    • 2005
  • This paper describes the design, fabrication and characteristics of a piezoelectric valve using MCA(Multilayer ceramic actuator). The MCA valve, which has the buckling effect, consists of three separate structures; MCA, a valve actuator die and an a seat die. The design of the actuator die was done by FEM modeling and displacement measurement, respectively. The valve seat die with 6 trenches was made, and the actuator die, which is driven to MCA under optimized conditions, was also fabricated. After Si-wafer direct bonding between the seat die and the actuator die, MCA was also anodic bonded to the seat/actuator die structure. PDMS sealing pad was fabricated to minimize a leak-rate. It was also bonded to seat die and SUS package. The MCA valve shows a flow rate of 9.13 sccm at a supplied voltage of 100 V with a 50 % duty cycle, maximum non-linearity was 2.24 % FS and leak rate was $3.03{\times}10^{-8}pa$. $m^3/cm^2$.

  • PDF

Fabrication of a high performance microvalve using a multilayer piezoelectric actuator and its characteristics (적층형 압전 엑츄에이터를 이용한 고성능 마이크로 밸브의 제작과 그 특성)

  • Seo, Jung-Ho;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.390-391
    • /
    • 2006
  • This paper describes the design, fabrication and characteristics of a micromachined piezoelectric valve utilizing a multilayer ceramic actuator (MCA). The micromachined MCA valve, which uses a buckling effect, consists of three separate structures: the MCA, the valve actuator die and the seat die. The valve seat die with 6 trenches was made, and the actuator die, which is driven by the MCA under optimized conditions, was also fabricated. After Si wafer direct bonding between the seat die and the actuator die, the MCA was also anodically bonded to the seat/actuator die structure. A polydimethylsiloxane (PDMS) sealing pad was fabricated to minimize the leak rate. Finally, the PDMS sealing pad was also bonded to the seat die and the stainless steel package. The MCA valve shows a flow rate of 9.13 sccm at an applied DC voltage of 100 V with a 50% duty cycle and a maximum non-linearity of 2.24% FS. Therefore, the fabricated MCA valve is suitable for a variety of flow control equipment, as a medical bio-system and in the automobile industry.

  • PDF

Fabrication of a buckling micro MCA valve (버클링 마이크로 적층형 압전밸브의 제작)

  • Lee, Jong-Hwa;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.47-52
    • /
    • 2006
  • This paper describes the design, fabrication and characteristics of a buckling microvalve using a MCA (multilayer ceramic actuator). The mechanical and fluidic analysis are done by finite element method. The designed structure is normally closed microvalve using buckling effect, which is consist of three separate structures; a valve seat die, an actuator die and a small piezoelectric actuator. The flow rate of the fabricated MCA valve was 0-8.13 ml/min at the applied pressure of 0-50 kPa. Maximum non-linearity was 2.24 % FS at a duty cycle of 50 %. The maximum pressure was 230 kPa and the leak rate was $3.03{\times}10^{-8}\;Pa{\cdot}m^{3}/cm^{2}$ at a supply voltage of 100 V.

Design of flexure hinge to reduce lateral force of laser assisted thermo-compression bonding system (레이저 열-압착 본딩 시스템의 Lateral Force 감소를 위한 유연 힌지의 설계)

  • Lee, Dong-Won;Ha, Seok-Jae;Park, Jeong-Yeon;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.23-30
    • /
    • 2020
  • Laser Assisted Thermo-Compression Bonding (LATCB) has been proposed to improve the "chip tilt due to the difference in solder bump height" that occurs during the conventional semiconductor chip bonding process. The bonding module of the LATCB system has used a piezoelectric actuator to control the inclination of the compression jig on a micro scale, and the piezoelectric actuator has been directly coupled to the compression jig to minimize the assembly tolerance of the compression jig. However, this structure generates a lateral force in the piezoelectric actuator when the compression jig is tilted, and the stacked piezoelectric element vulnerable to the lateral force has a risk of failure. In this paper, the optimal design of the flexure hinge was performed to minimize the lateral force generated in the piezoelectric actuator when the compression jig is tilted by using the displacement difference of the piezoelectric actuator in the bonding module for LATCB. The design variables of the flexure hinge were defined as the hinge height, the minimum diameter, and the notch radius. And the effect of the change of each variable on the stress generated in the flexible hinge and the lateral force acting on the piezoelectric actuator was analyzed. Also, optimization was carried out using commercial structural analysis software. As a result, when the displacement difference between the piezoelectric actuators is the maximum (90um), the maximum stress generated in the flexible hinge is 11.5% of the elastic limit of the hinge material, and the lateral force acting on the piezoelectric actuator is less than 1N.

Development of Flexure Applied Bond head for Die to Wafer Hybrid Bonding (Die to Wafer Hybrid Bonding을 위한 Flexure 적용 Bond head 개발)

  • Jang, Woo Je;Jeong, Yong Jin;Lee, Hakjun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.171-176
    • /
    • 2021
  • Die-to-wafer (D2W) hybrid bonding in the multilayer semiconductor manufacturing process is one of wafer direct bonding, and various studies are being conducted around the world. A noteworthy point in the current die-to-wafer process is that a lot of voids occur on the bonding surface of the die during bonding. In this study, as a suggested method for removing voids generated during the D2W hybrid bonding process, a flexible mechanism for implementing convex for die bonding to be applied to the bond head is proposed. In addition, modeling of flexible mechanisms, analysis/design/control/evaluation of static/dynamics properties are performed. The proposed system was controlled by capacitive sensor (lion precision, CPL 290), piezo actuator (P-888,91), and dSpace. This flexure mechanism implemented a working range of 200 ㎛, resolution(3σ) of 7.276nm, Inposition(3σ) of 3.503nm, settling time(2%) of 500.133ms by applying a reverse bridge type mechanism and leaf spring guide, and at the same time realized a maximum step difference of 6 ㎛ between die edge and center. The results of this study are applied to the D2W hybrid bonding process and are expected to bring about an effect of increasing semiconductor yield through void removal. In addition, it is expected that it can be utilized as a system that meets the convex variable amount required for each device by adjusting the elongation amount of the piezo actuator coupled to the flexible mechanism in a precise unit.

Die Cast Prototyping using Plaster Casting with Pressurized Vibration Casting Machine

  • Kim, Ki-Don;Yang, Dong-Yol;Park, Tae-Kwon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.56-61
    • /
    • 2001
  • This work is concerned with the development of a new plaster die casting process the combines pressurization and vibration for the prototyping of die-castings, and also with a plaster die-casting machine that has a structure quite similar to that of an ordinary die casting machine. The machine utilized an air cylinder for pressurization and a magnetic actuator for vibration. A rapid prototyped pattern is made by the LOM process to prepare a plaster mold. In the process, a plunger int he developed machine simultaneously pressurizes and vibrates the molten metal to fill the plaster mold completely and to facilitate the creation of nuclei in the molten metal, respectively. The developed machine produced a prototype of an end clutch cover with a remarkable improvement in mechanical properties.

  • PDF

Development of automatic assembly module for yoke parts in auto-focusing actuator (Auto-Focusing 미세부품 Yoke 조립 자동화 모듈 개발)

  • Ha, Seok-Jae;Park, Jeong-Yeon;Park, Kyu-Sub;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • v.13 no.1
    • /
    • pp.55-60
    • /
    • 2019
  • Smart-phone in the recently released high-end applied to the camera module is equipped with the most features auto focusing camera module. Also, auto focusing camera module is divided into voice coil motor, encoder, and piezo according to type of motion mechanism. Auto focusing camera module is composed of voice coil motor (VCM) as an actuator and leaf spring as a guide and suspension. VCM actuator is made of magnet, yoke as a metal, and coil as a copper wire. Recently, the assembly as yoke and magnet is made by human resources. These process has a long process time and it is difficult to secure quality. Also, These process is not economical in cost, and productivity is reduced. Therefore, an automatic assembly as yoke and magnet is needed in the present process. In this paper, we have developed an automatic assembly device that can automatically assemble yoke and magnet, and performed verifying performance. Therefore, by using the developed automatic assembly device, it is possible to increase the productivity and reduce the production cost.