• Title/Summary/Keyword: active motion

Search Result 921, Processing Time 0.028 seconds

LQC Control for Semi-Active Suspension Systems with Road-Adaptation (노면추정을 통한 반능동 현가시스템의 LQG 제어)

  • 손현철;홍경태;홍금식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.9
    • /
    • pp.669-678
    • /
    • 2003
  • A road-adaptive LQG control for the semi-active Macpherson strut suspension system of hydraulic type is investigated. A new control-oriented model, which incorporates the rotational motion of the unsprung mass, is used for control system design. First, based on the extended least squares estimation algorithm, a LQG controller adapting to the estimated road characteristics is designed. With computer simulations, the performance of the proposed LQC-controlled semi-active suspension is compared with that of a non-adaptive one. The results show better control performance of the proposed system over the compared one.

A Study on the Manufacturing and Dynamic Charateristics of Vibration Absorber Using Piezoceramics and Isolation Pad (압전세라믹과 방진고무를 이용한 진동흡수장치의 제작과 동적특성 연구)

  • Heo, Seok;Kwak, Moon-k
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.477-482
    • /
    • 2002
  • This research is concerned with the study of an active vibration absorber using piezoelectric actuators and Isolation pad. The active isolation system consists of 4-pairs of PZT actuators bonded on the surface of an aluminum plate and a passive damping material. The active system is connected to the passive system in series. The Signals of the accelerometers are fed into the PZT actuator through the controller. We proposed a new control technique which can deal with the shock as well as the base excitation in this study. The Positive Acceleration Feedback(PAE) tuned to the natural frequency of the vibration isolation system is used to suppress the vibrations caused by the shock using the top accelerometer signal. The Negative Acceleration Feedback (NAF) based on the base acceleration signal is used to counteract the base motion. Experimental results show that the proposed active vibration isolation system can suppress vibrations.

  • PDF

Active noise control algorithm for quasi-periodic noise (준주기적인 소음을 저감하기 위한 능동 소음제어 알고리즘)

  • Lee, Nokhaeng;Park, Youngjin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.710-711
    • /
    • 2014
  • In many cases, periodic noise occurs because most applications include motors, compressors and so on which have reciprocating motion. The noise usually contains tones at the fundamental frequency and at several higher harmonic frequencies in practice. For this type of noise, we developed a frequency-domain active noise control algorithm and determined that it's effective. However, the performance deteriorated for quasi-periodic noise. In this paper, we develop compensated frequency-domain active noise control algorithm for quasi-periodicity. And then, we implement computer simulation and compare the performance.

  • PDF

Character and Application of Linear Oscillating Actuator(LOA) (리니어 진동 액튜에이터(LOA)의 특성 및 응용)

  • Jang, Seok-Myeong;Park, Chan-Il;Park, Hee-Chang;Chung, Tae-Young;Kim, Hyung-Kyoo;Son, Young-Soo;Moon, Seok-Jun
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.226-228
    • /
    • 1994
  • In this paper, a moving iron core type LOA is designed and analyzed electro-magnetically and is applied to the active control of structural vibration as an active mass driver. Structural vibration is sensored by the accelerometer attached the structure and reduced by the optimally controlled motion of active mass of LOA giving anti-phase inertia farce to the structure. As a result, the basement of the application of LOA as an active mass driver is successfully established.

  • PDF

The Effects of Motor Control with Active Movement and Passive Movement (능동운동과 수동운동이 운동조절에 미치는 영향)

  • Bae Sung-Soo;Kim Cheul-Yong;HwangBo Gak;Chung Hyun-Ae;Choi Jae-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.11 no.3
    • /
    • pp.13-21
    • /
    • 1999
  • Active movement is able to actively contract his muscles and move a segment either with or without assistance. This movement maintain physiologic elasticity and contractility of the participating muscles, provide sensory feedback from the contracting muscles and stimulus for bone integrity as well as increase circulation and prevent thrombus formation, in addition to develop coordination and moor skills for functional activities. Passive movement is the motion to the external force; gravity, machine, another individuals. Active movement is more activated rather than passived on the central nervous system. Therefore, we think that active movement is more effected facilitating through specific inhibitory mobilization of muscle.

  • PDF

Active Vibration Suppression Using Sweeping Damping Controller (움직이는 감쇠제어기를 이용한 능동진동제어)

  • Bae, Byung-Chan;Kwak, Moon-K.;Lee, Myung-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.293-296
    • /
    • 2005
  • This paper is concerned with the sweeping damping controller for beam. The active damping characteristics can be enhanced by moving the damper along the longitudinal axis. In this paper, the equation of motion for a beam including a sweeping damping controller is derived and its stability is proved by using Lyapunov stability theorem. It is found from the theoretical study that the sweeping damping controller can enhance the active damping characteristics, so that a single damper can suppress all the vibration modes of the beam. To demonstrate the concept of the sweeping damping control, the eddy current damper was applied to a cantilever, where the eddy current damping can move along the axis. The experimental result shows that the sweeping eddy current damper Is an effective device for vibration suppression.

  • PDF

Control and Synchronization of New Hyperchaotic System using Active Backstepping Design

  • Yu, Sung-Hun;Hyun, Chang-Ho;Park, Mi-Gnon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.2
    • /
    • pp.77-83
    • /
    • 2011
  • In this paper, an active backstepping design is proposed to achieve control and synchronization of a new hyperchaotic system. The proposed method is a systematic design approach and exists in a recursive procedure that interlaces the choice of a Lyapunov function with the design of the active control. The proposed controller enables stabilization of chaotic motion to the origin as well as synchronization of the two identical new hyperchaotic systems. Numerical simulations illustrate the validity of the proposed control technique.

Agreement of Manual Muscle Testing and Test-Retest Reliability of Hand Held Dynamometer for the Posterior Gluteus Medius Muscle for Patients With Low Back Pain (요통 환자를 대상으로 후중둔근 도수근력검사의 일치도 및 휴대용 근력계 측정 방법의 신뢰도 검사)

  • Park, Kyue-Nam;Kim, Hyun-Sook;Choi, Houng-Sik;Lee, Won-Hwee;Ha, Sung-Min;Kim, Su-Jung
    • Physical Therapy Korea
    • /
    • v.18 no.3
    • /
    • pp.67-75
    • /
    • 2011
  • The purpose of this study was to assess the agreement of manual muscle testing (MMT) and test-retest reliability of a hand held dynamometer for the posterior gluteus medius muscle, with and without lumbar stabilization, using a pressure biofeedback unit for patients with low back pain. The pressure biofeedback unit was used to minimize the substitute motion of the lumbopelvic region during hip abduction in patients lying on their side. Fifteen patients with low back pain participated in this study. A tester determined the MMT grades of the posterior gluteus medius with and without the pressure biofeedback unit. Active hip abduction range of motion with an inclinometer and the strength of their posterior gluteus medius using a hand held dynamometer were measured with and without the pressure biofeedback unit in the MMT position. The agreement of the grade of muscle strength in the MMT, and intra-rater reliability of both the active hip abduction range of motion and the strength of posterior gluteus medius were analyzed using the weighted kappa and intraclass correlation coefficient (ICC), respectively. The agreement of MMT with the pressure biofeedback unit (weighted kappa=.92) was higher than the MMT (weighted kappa=.34)(p<.05). The inclinometer with pressure biofeedback unit measurement of the active hip abduction range of motion had an excellent intra-rater reliability (ICC=.90). Also, the hand held dynamometer with pressure biofeedback unit measure of strength of the posterior gluteus medius had a good intra-rater reliability (ICC=.85). Therefore, the test for muscle strength with pressure biofeedback unit will be a reliable method for the determination of the MMT grades or amount of posterior gluteus medius muscle strength and the measurement of the range of motion for hip abduction in patients with low back pain.

Modeling of Near Fault Ground Motion due to Moderate Magnitude Earthquakes in Stable Continental Regions (안정대륙권역의 중규모지진에 의한 근단층지반운동의 모델링)

  • Kim, Jung-Han;Kim, Jae-Kwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.101-111
    • /
    • 2006
  • This paper proposes a method for modeling new fault ground motion due to moderate size earthquakes in Stable Continental Regions (SCRs) for the first time. The near fault ground motion is characterized by a single long period velocity pulse of large amplitude. In order to model the velocity pulse, its period and peak amplitude need be determined in terms of earthquake magnitude and distance from the causative fault. Because there have been observed very few new fault ground motions, it is difficult to derive the model directly from the recorded data in SCRs. Instead an indirect approach is adopted in this work. The two parameters, the period and peak amplitude of the velocity pulse, are known to be functions of the rise time and the slip velocity. For Western United States (WUS) that belongs active tectonic regions, there art empirical formulas for these functions. The relations of rise time and slip velocity on the magnitude in SCRs are derived by comparing related data between Western United States and Central-Eastern United States that belongs to SCRs. From these relations, the functions of these pulse parameters for NFGM in SCRs can be expressed in terms of earthquake magnitude and distance. A time history of near fault ground motion of moderate magnitude earthquake in stable continental regions is synthesized by superposing the velocity pulse on the for field ground motion that is generated by stochastic method. As an demonstrative application, the response of a single degree of freedom elasto-plastic system is studied.

Coupled Motion Simulation of the Mobile Harbor and Anti-Rolling Devices in Waves

  • Yoon, Hyeon-Kyu;Kang, Joo-Nyun;Lew, Jae-Moon;Moon, Seok-Joon;Chung, Tae-Young
    • Journal of Navigation and Port Research
    • /
    • v.34 no.4
    • /
    • pp.271-279
    • /
    • 2010
  • The Mobile Harbor(MH) is a new transportation platform that can load and unload containers to and from very large container ships in the sea. This loading and unloading by crane can be performed with only very small movements of the MH in waves because MH is operated outside of the harbor. For this reason, an anti-rolling tank(ART) and an active mass driving system(AMD) were designed to reduce MH's roll motion, especially at the natural frequency of MH. In the conceptual design stage, it is difficult to confirm the design result of theses anti-rolling devices without modeling and simulation tools. Therefore, the coupled MH and anti-rolling devices' dynamic equations in waves were derived and a simulation program that can analyze the roll reduction performance in various conditions, such as sea state, wave direction, and so on, was developed. The coupled equations are constructed as an eight degrees of freedom (DOF) motion that consists of MH's six DOF dynamics and the ART's and AMD's control variables. In order to conveniently include the ART's and AMD's control dynamics in the time domain, MH's radiated wave force was described by an impulse response function derived by the damping coefficient obtained in the frequency domain, and wave exciting forces such as Froude-Krylov force and diffraction force and nonlinear buoyancy were calculated at every simulation time interval. Finally, the roll reduction performances of the designed anti-rolling devices were successfully assessed in the various loading and wave conditions by using a developed simulation program.