• Title/Summary/Keyword: acid hydrolysis condition

Search Result 143, Processing Time 0.025 seconds

Microwave-Assisted Acid-Hydolysis of Laminaria Japonica and its Ethanol Productivity: Comparison with Conventional Heating (마이크로파를 이용한 다시마의 산 가수분해와 에탄올 생산성: 재래식 가열과 비교)

  • Song, Myoung-Ki;Na, Choon-Ki
    • New & Renewable Energy
    • /
    • v.9 no.2
    • /
    • pp.5-14
    • /
    • 2013
  • The efficiency of microwave-assisted acid hydrolysis of seaweeds for the production of ethanol was investigated and its effect on hydrolysis into reducing sugar and fermentation into ethanol evaluated as compared with those by conventional heating. A brown seaweed, Laminaria japonica (10-100g/L) was hydrolysed under dilute acidic condition (0.5N $H_2SO_4$, $100^{\circ}C$) with two sorts of heating: microwave irradiation for ${\leq}10min$ and conventional heating for 10-60min. Microwave-assisted hydrolysis was shown to be more efficient. A similar range of reducing sugar and ethanol yields as with the conventional autoclave heating procedure(${\geq}30min$) was observed, but it was obvious that production of ethanol from microwave-assisted hydrolysis had a 3 times faster reaction rate leading to very short production times, lower energy consumption/loss than from the conventional heating mode, and higher biomass loading without significant reducing ethanol yield, thus microwave-assisted acid hydrolysis is a potential alternative method for more effective hydrolysis of Laminaria japonica.

Acid Hydrolysis Characteristics of Yellow Poplar for High Concentration of Monosaccharides Production (백합나무를 이용한 고농도 단당류 생산을 위한 산 가수분해 특성 연구)

  • Shin, Soo-Jeong;Park, Jong-Moon;Cho, Dae Haeng;Kim, Yong Hwan;Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.578-584
    • /
    • 2009
  • We investigated acid hydrolysis characteristics of yellow poplar woodmeal with concentrated sulfuric acid for high concentration of monosaccharides production. Woodmeal to 72% sulfuric acid ratio (w/w), $2^{nd}$ hydrolysis temperature and time were main variables for finding optimum reaction condition. Optimum woodmeal to 72% sulfuric acid ratio was 1 : 2.61 (w/w) and $2^{nd}$ hydrolysis temperature and time was $105^{\circ}C$ and 40 min as 44.8 g/L of glucose and 25.2 g/L of xylose in hydrolysis solution. In this acid hydrolysis solution, furfural, 5-HMF, low molecular weight phenolic compounds were identified. Furfural and 5-HMF concentration were increased as increasing $2^{nd}$ hydrolysis time. More than 40 min of $2^{nd}$ hydrolysis at $110^{\circ}C$, xylose concentration was decreased but glucose concentration was leveled out because xylose to furfural reaction was faster than xylan to xylose, but cellulose to glucose reaction was similar rate with glucose to 5-HMF at that $2^{nd}$ hydrolysis reaction condition.

Enzymatic Hydrolysis Condition of Pretreated Corncob by Oxalic Acid to Improve Ethanol Production (에탄올 생산 향상을 위한 옥살산 전처리 옥수숫대의 효소가수분해 조건 탐색)

  • Lim, Woo-Seok;Lee, Jae-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.4
    • /
    • pp.294-301
    • /
    • 2012
  • In this study, we investigated the features of bioethanol fermentation of corncob biomass after oxalic acid pretreatment as well as enzymatic hydrolysis. The enzymatic hydrolysis was performed with Accellerase 1000 and the highest yield of monomeric sugars ($64.8g/{\ell}$) was obtained at $50^{\circ}C$ and pH 4.5 for 96 hrs hydrolysis period. For the ethanol fermentation the monomeric sugars obtained from pretreated corncob were subjected to the biological treatment using Pichia stipitis CBS 6054. It was turned out that ethanol production from oxalic acid pretreated corncob was the most feasible at 10~14% of biomass loading as well as 15 FPU enzyme amount. Under these fermentation condition, the ethanol yield was approached to 0.47 after 24 hrs fermentation period, which was corresponded to 92.2% of conversion rate.

Studies on the Destructible Surfactants(2);Surface-Active Properties of Cleavable Surfactant with 1, 3-Dioxolane Ring (분해성 계면활성제에 관한 연구(제2보);1, 3-Dioxlane고리를 갖는 분해성계면활성제의 합성)

  • Kim, J.H.;Ha, J.H.;Jeong, N.H.;Nam, K.D.
    • Journal of the Korean Applied Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.101-107
    • /
    • 1995
  • As the surfactants that were used in micellar reaction, emulsion polymerization and phase-transfer reaction etc. have the problems, the cleavable surfactant was converted to inactive compound after such as the reaction in the condition. Because 1, 3-dioxolane ring by ketal or acetal reactioc is lack of stability in acid condition, it is easily made to acid-hydrolysis. And cmc value of the surfactant is assumed $1.0{\times}10^{-5}mol/L$ and surface tension in cmc is 31 dyne/cm. Compared with other surfactant, this surfactant foam property is not better. But emulsion property was relatively good. According as acid-hydrolysis property was observed the interface tension change between aqueous solution and benzene by the variation of pH and time, this surfactant was made to hydrolysis within about 300minutes in pH 1${\sims}$4. Therefore this surfactant is expected to be a good emulsifier that has the bad foam property and the acid-hydrolysis property in acid condition.

Study on the Hydrolysis Kinetics of Xylan on Different Acid Catalysts (다양한 산 촉매에서 자이란 가수분해 특성)

  • Na, Byeong-Il;Lee, Jae-Won
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.226-232
    • /
    • 2014
  • In this study, we investigated kinetic model for the acid-catalyzed xylan hydrolysis at temperature $120{\sim}150^{\circ}C$. Also, we analyzed the kinetic parameters for xylose production and furfural decomposition. The hydrolysis of xylan and the degradation of xylose were promoted by high reaction temperature and acid concentration. The optimal hydrolysis condition for the highest reaction rate constants ($k_1$) was different depending on the acid catalysts. Among sulfuric, oxalic and maleic acid, the xylan reaction rate constants ($k_1$) to xylose had the highest value of $0.0241min^{-1}$ when 100 mM sulfuric acid was used at $120^{\circ}C$. However, sulfuric acid induced more xylose degradation compared to oxalic and maleic acid hydrolysis. The activation energy for xylan degradation was the highest when sulfuric acid was used.

Analysis of Isoflavone Contents of Soybean By-products with Acid Hydrolysis Method (산 가수분해시 가열방법과 시간 및 추출조건에 따른 대두가공 부산물의 이소플라본 함량 변화)

  • Han, Jin-Suk;Hong, Hee-Do;Kim, Sung-Ran
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.10
    • /
    • pp.1420-1426
    • /
    • 2006
  • To establish a rapid and effective method for the analysis of soy isoflavone which is known to have lots of variation in derivatives of glucoside, conversion rate from isoflavone conjugates to its aglycones, and decomposition of conversed aglycones were investigated with various acid hydrolysis conditions. A number of heating conditions for acid hydrolysis including heating at convection oven $(105^{\circ}C)$, water bath $(95^{\circ}C)$, heating block $(120^{\circ}C)$, and hot plate $(120^{\circ}C)$ were applied. Acid hydrolysis in heating block with reflux was chosen as the best heating condition. From the stability test of isoflavone aglycone during acid hydrolysis, genistein, daidzein, and glycitein did not show any significant changes in their contents for 60 min of hydrolysis. Ten to thirty milligram of sample per 1 mL HCl was the best ratio of sample to acid. As conclusion, acid hydrolysis for 60 min after addition of 15 mL HCl solution to 0.5 g soybean, and then fill up to 50 mL with methanol, followed by HPLC analysis was set as a final analysis method. From this method, isoflavone contents expressed as total aglycone of feed meal was the highest with content of $1288.5{\mu}g/g$ followed by those of dehulled meal.

Effect of Malonic Acid-Catalyzed Pretreatment on the Hydrolysis of Gracilaria verrucosa (Malonic acid를 이용한 전처리가 꼬시레기의 가수분해에 미치는 영향)

  • Park, Mi-Ra;Jeong, Gwi-Taek
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.542-546
    • /
    • 2018
  • In this study, the effects of malonic acid-catalyzed pretreatment on the subsequent enzymatic hydrolysis of red macro-algae Gracilaria verrucosa for production of biosugar (total reducing sugar) were investigated. In the hydrothermal pretreatment condition of 300 mM malonic acid, 1:20 solid-to-liquid ratio at $130^{\circ}C$ for 60 min, a 49.2% biosugar yield was achieved. Moreover, by subsequent enzymatic hydrolysis after pretreatment, maximum yield of 64.5% was achieved.

Auto-hydrolysis of Lignocellulosics Under Extremely Low Sulphuric Acid and High Temperature Conditions in Batch Reactor

  • Tunde Victio Ojumu;Ba aku Emmanuel AttahDaniel;Eriola Betiku;Bamidele Ogbe Solomon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.5
    • /
    • pp.291-293
    • /
    • 2003
  • Batch reactors were employed to investigate the kinetics of cellulose hydrolysis under extremely low acid (ELA) and high temperature condition. The sawdust was pretreated by Auto-hydrolysis prior to the batch reaction. The maximum yield of glucose obtained from the batch reactor experiment was about 70% for the pretreated sawdust, this occurred at 210 and 22$0^{\circ}C$. The maximum glucose yield from the untreated sawdust was much lower at these temperatures, about 55%. The maximum yields of glucose from the lignocellulosics were obtained between 15th and 20th minutes after which gradual decrease was observed.

Effect of Reaction Factors on Reducing Sugar Production from Enteromorpha intestinalis Using Solid Acid Catalyst (고체 산촉매를 이용한 창자파래로부터 환원당 생산에 미치는 인자들의 영향)

  • Jeong, Gwi-Taek;Park, Don-Hee
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.478-481
    • /
    • 2015
  • In this study, the hydrolysis of green macro-algae Enteromorpha intestinalis using solid acid catalyst was conducted to obtain total reducing sugar. The hydrolysis was optimized with four reaction parameters of liquid-to-solid (L/S) ratio, catalyst amount, reaction temperature, and reaction time. As a optimized result, the highest TRS of 7.74 g/L was obtained under condition of 7.5 L/S ratio, $140^{\circ}C$, 15% catalyst amount and 2 hr. By the way, at this condition, only 0.13 g/L 5-HMF was detected. The solid acid-catalyzed hydrolysis of marine resources had the potential in the field of bioenergy.

Furfural production from miscanthus and utilization of miscanthus residues (Miscanthus로부터 furfural 생산과 잔여물의 활용에 관한 연구)

  • Kim, Sung Bong;Yoo, Hah-Young;Lee, Sang Jun;Lee, Ja Hyun;Choi, Han Seok;Kim, Seung Wook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.114.2-114.2
    • /
    • 2011
  • Furfural is a versatile derivative. It can be utilized for a building-block of furfuryl alcohol production and a component of fuels or liquid alkanes. But in bio-process, furfural is a critical compound because it inhibits cell growth and metabolism. Furfural could be converted from xylose and usually produced from biomass in which hemicellulose is abundant. In this study, furfural production from miscanthus was performed and utilization of miscanthus residue was consequently conducted. At first, hydrolysis for investigation of miscanthus composition and furfural production was performed using sulfuric acid. Previously, we optimized dilute acid pretreatment condition for miscanthus pretreatment and the condition was found to be about 15 min of reaction time, 1.5% of acid concentration and about $140^{\circ}C$ of temperature and 60% (about 7 g/L) of xylose was solubilized from miscanthus. Using the xylose, furfural production was conducted as second step. Approximately $160{\sim}200^{\circ}C$ of temperature was accompanied with the hydrolysis for pyrolysis of biomass. When the investigated condition; $180^{\circ}C$ of temperature, 20 min of reaction time and 2% of acid concentration was operated for furfural production, furfural productivity was reached to be 77% of theoretical maximum. After reaction, residue of miscanthus was utilized as feedstock of ethanol fermentation. Residue was well washed using water and saccharified using hydrolysis enzymes. Hydrolysate (glucose) from saccharification was utilized for the carbon source of Saccharomyces cervisiae K35.

  • PDF