DOI QR코드

DOI QR Code

Enzymatic Hydrolysis Condition of Pretreated Corncob by Oxalic Acid to Improve Ethanol Production

에탄올 생산 향상을 위한 옥살산 전처리 옥수숫대의 효소가수분해 조건 탐색

  • Lim, Woo-Seok (Department of Forest Products and Technology (BK21 Program), Chonnam National University) ;
  • Lee, Jae-Won (Department of Forest Products and Technology (BK21 Program), Chonnam National University)
  • 임우석 (전남대학교 농업생명과학대학 산림자원학부) ;
  • 이재원 (전남대학교 농업생명과학대학 산림자원학부)
  • Received : 2012.06.29
  • Accepted : 2012.07.18
  • Published : 2012.07.25

Abstract

In this study, we investigated the features of bioethanol fermentation of corncob biomass after oxalic acid pretreatment as well as enzymatic hydrolysis. The enzymatic hydrolysis was performed with Accellerase 1000 and the highest yield of monomeric sugars ($64.8g/{\ell}$) was obtained at $50^{\circ}C$ and pH 4.5 for 96 hrs hydrolysis period. For the ethanol fermentation the monomeric sugars obtained from pretreated corncob were subjected to the biological treatment using Pichia stipitis CBS 6054. It was turned out that ethanol production from oxalic acid pretreated corncob was the most feasible at 10~14% of biomass loading as well as 15 FPU enzyme amount. Under these fermentation condition, the ethanol yield was approached to 0.47 after 24 hrs fermentation period, which was corresponded to 92.2% of conversion rate.

본 연구는 농업 부산물인 옥수숫대를 이용하여 옥살산 전처리와 효소가수분해를 통한 에탄올 발효 효율 향상조건을 탐색하였다. 옥살산 전처리 옥수숫대의 효소가수분해는 Accellerase 1000을 이용하였으며, $50^{\circ}C$ 온도조건과 pH 4.5에서 96시간 가수분해하여 가장 높은 단당류 수율인 $64.8g/{\ell}$의 단당류 수율을 나타냈다. 옥수숫대에서 생산된 단당류의 발효에는 Pichia stipitis CBS 6054를 공시균주로 사용하였고, 전처리 옥수숫대 및 효소 투입량이 각각 10~14%와 15 FPU 이었을 때 효율적인 에탄올 생산에 가장 적합한 것으로 판명되었다. 이러한 조건에서 24시간 발효 후에 약 88.2%의 에탄올 전환율에 해당되는 0.45의 에탄올 수율을 얻었다.

Keywords

References

  1. 김혜연, 이재원, T. W. Jeffries, 최인규. 2011. 바이오 에탄올 생산을 위한 백합나무(Liriodendron tulipifera) 칩의 동시당화발효 및 Response Surface Method를 이용한 옥살산 전처리 조건 탐색. 목재공학 39(1): 75-85.
  2. Bansal, P., M. Hall, M. J. Realf, and J. H. Lee. 2009. Modeling cellulase kinetics on lignocellulosic substrate. Biotechnology Advances 27: 833-848. https://doi.org/10.1016/j.biotechadv.2009.06.005
  3. Berlin, A. N. Gilkes, D. Kilburn, V. Maximenko, R. Bura, A. Markov, A. Skomarovsky, A. Gusakov, A. Sinitsyn, O. Okunev, J. Solovieva, and J. N. Saddler. 2006. Evaluation of cellulase preparations for hydrolysis of hardwood substrates. Appled Biochemisty and Biotechnology 130: 528-545. https://doi.org/10.1385/ABAB:130:1:528
  4. Chen, M., J. Zhao, and L. Xia. 2008. Enzymatic hydrolysis of maize straw polysaccharides for the production of reducing sugars. Carbohydrate Polymers 71: 411-415. https://doi.org/10.1016/j.carbpol.2007.06.011
  5. Ferreira, S., A. R. Duarte, M. H. L. Riberio, J. A. Queiroz, and F. C. Domingues. 2009. Response surface optimization of enzymatic hydrolysis of Cistus ladanifer and Cytisus striatus for bioethanol production. Biochemical Engineering Journal. 45: 192-200. https://doi.org/10.1016/j.bej.2009.03.012
  6. Galbe, M. and G. Zacchi. 2002. A review of the production of ethanol from softwood. Applied Microbiology Biotechnology 59: 618-628. https://doi.org/10.1007/s00253-002-1058-9
  7. Gupta, R., K. K. Sharma, and R. C. Kuhad. 2009. Separate hydrolysis and fermentation (SHF) of Prosopis juliflor, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisia and Pichia stipitis-NCIM 3498. Bioresource Technology 100: 1214-1220. https://doi.org/10.1016/j.biortech.2008.08.033
  8. Lee, J. W., R. C. L. B. Rodrigues, H. Y. Kim, I. G. Choi, and T. W. Jeffries. 2010. The roles of xylan and lignin in oxalic acid pretreated corncob during separate enzymatic hydrolysis and ethanol fermentation. Bioresource Technology 101: 4379-4385. https://doi.org/10.1016/j.biortech.2009.12.112
  9. Lee, J. W., R. C. L. B. Rodrigues, and T. W. Jeffries. 2009. Simultaneous saccharification and ethanol fermentation of oxalic acid pretreated corncob assessed with response surface methodology. Bioresource Technology 100: 6307-6311. https://doi.org/10.1016/j.biortech.2009.06.088
  10. Ramos, L. P., J. N. Breuil, and J. N. Saddler. 1993. The use of enzyme recycling and the influence of sugar accumulation on cellulose hydrolysis by Trichoderma cellulases. Enzyme and Microbial Technology 15: 91-125.
  11. Reese, E. T. 1980. Inactivation of cellulase by shaking and its prevention by surfactants. Journal of Applied Biochemistry 2: 36-39.
  12. Scalbert, A., B. Monties, and G. Janin. 1989. Tannins in wood: comparison of different estimateion methods. J. Agric. Food. Chem. 37(5); 1324-1329. https://doi.org/10.1021/jf00089a026
  13. Sluiter, B., B. Hames, R. Ruiz, C. Scarlate, J. Sluiter, D. Templeton, and D. Crocker. 2010. Determication of structural carbohydrate and lignin in biomass. Laboratory Analytical Procedure.
  14. Sun, Y. and J. Cheng. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology. 83: 1-11. https://doi.org/10.1016/S0960-8524(01)00212-7
  15. Wyman, C. E. 1999. Biomass ethanol: technical progress, opportunities, and commercial challenges, Annual Review of Energy the Environment 24: 189-226. https://doi.org/10.1146/annurev.energy.24.1.189
  16. Zheng, Y., Z. Pan, R. Zhang, and B. M. Jenkins. 2009. Kinetic modeling for enzymatic hydrolysis of pretreated creeping wild ryegrass. Biotechnology Bioengineering 102: 1558-1569. https://doi.org/10.1002/bit.22197

Cited by

  1. Enhancement of Ethanol Production by The Removal of Fermentation Inhibitors, and Effect of Lignin-derived Inhibitors on Fermentation vol.44, pp.3, 2016, https://doi.org/10.5658/WOOD.2016.44.3.389
  2. Improved Ethanol Production from Deacetylated Yellow Poplar (Liriodendron tulipifera) by Detoxification of Hydrolysate and Semi-SSF vol.54, pp.4, 2016, https://doi.org/10.9713/kcer.2016.54.4.494
  3. Separation of Reducing Sugars from Rape Stalk by Acid Hydrolysis and Fabrication of Fuel Pellets from its Residues vol.27, pp.1, 2014, https://doi.org/10.7732/kjpr.2014.27.1.060