DOI QR코드

DOI QR Code

Microwave-Assisted Acid-Hydolysis of Laminaria Japonica and its Ethanol Productivity: Comparison with Conventional Heating

마이크로파를 이용한 다시마의 산 가수분해와 에탄올 생산성: 재래식 가열과 비교

  • Song, Myoung-Ki (Department of Environmental Engineering, Mokpo National University) ;
  • Na, Choon-Ki (Department of Environmental Engineering, Mokpo National University)
  • 송명기 (목포대학교 환경공학과) ;
  • 나춘기 (목포대학교 환경공학과)
  • Received : 2013.03.26
  • Accepted : 2013.06.12
  • Published : 2013.06.25

Abstract

The efficiency of microwave-assisted acid hydrolysis of seaweeds for the production of ethanol was investigated and its effect on hydrolysis into reducing sugar and fermentation into ethanol evaluated as compared with those by conventional heating. A brown seaweed, Laminaria japonica (10-100g/L) was hydrolysed under dilute acidic condition (0.5N $H_2SO_4$, $100^{\circ}C$) with two sorts of heating: microwave irradiation for ${\leq}10min$ and conventional heating for 10-60min. Microwave-assisted hydrolysis was shown to be more efficient. A similar range of reducing sugar and ethanol yields as with the conventional autoclave heating procedure(${\geq}30min$) was observed, but it was obvious that production of ethanol from microwave-assisted hydrolysis had a 3 times faster reaction rate leading to very short production times, lower energy consumption/loss than from the conventional heating mode, and higher biomass loading without significant reducing ethanol yield, thus microwave-assisted acid hydrolysis is a potential alternative method for more effective hydrolysis of Laminaria japonica.

Keywords

References

  1. Balata, M., Balata, H., Oz, C. 2008, "Progress in bioethanol processing", Prog. Energy and Combustion Sci., Vol. 34, pp. 551-573. https://doi.org/10.1016/j.pecs.2007.11.001
  2. Nigam, P., Singh, A. 2011, "Production of liquid biofuels from renewable resources", Prog. Energy Combust. Sci., Vol. 37, pp. 52-58. https://doi.org/10.1016/j.pecs.2010.01.003
  3. Sims, R. E. H., Mabee, W., Saddler, J. N., Taylor, M. 2011, "An overview of second generation biofuel technologies", Bioresource Technololy, Vol. 101, pp. 1570-1580.
  4. Delgenes, J. P., Moletta, R., Navarro, J. M. 1990, "Acid-hydrolysis of wheat straw and process considerations for ethanol fermentation by Pichia Stipitis Y7124", Process Biochemistry, Vol. 25, pp. 132-135.
  5. Ahring, B. K., Jensen, K., Nielsen, P., Bjerre, A. B., Schmidt, A. S., 1996, "Pretreatment of wheat straw and conversion of xylose and xylan to ethanol by thermophilic anaerobic bacteria", Bioresource Technology, Vol. 58, pp. 107-113. https://doi.org/10.1016/S0960-8524(96)00090-9
  6. Nigam, J. N. 2001, "Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis", Journal of Biotechnology, Vol. 87, pp. 17-27. https://doi.org/10.1016/S0168-1656(00)00385-0
  7. Saha, B. C., Iten, L. B., Cotta, M. A., Wu, Y. V. 2005, "Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol", Process Biochemistry, Vol. 40, pp. 3693-3700. https://doi.org/10.1016/j.procbio.2005.04.006
  8. Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M. 2008, "Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances", Plant J., Vol. 54, pp. 621-639. https://doi.org/10.1111/j.1365-313X.2008.03492.x
  9. Zhang, X., Hu, Q., Sommerfeld, M., Puruhito, E., Chen, Y. 2010, "Harvesting algal biomass for biofuels using ultrafiltration membranes", Bioresource Technology, Vol. 101, pp. 5297-5304. https://doi.org/10.1016/j.biortech.2010.02.007
  10. Singh, A., Nigam, P. S., Murphy, J. D. 2011, "Renewable fuels from algae: an answer to debatable land based fuels", Bioresource Technology, Vol. 102, pp. 10-16. https://doi.org/10.1016/j.biortech.2010.06.032
  11. Lloyd, T. A., Wyman, C. E. 2005, "Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids", Bioresource Technology, Vol. 96, pp. 1967-1977. https://doi.org/10.1016/j.biortech.2005.01.011
  12. Gomez, L. D., Steele-King, C., McQueen-Mason, S. J. 2008, "Sustainable liquid biofuels from biomass: the writing's on the walls", New Phytol., Vol.178, pp. 473-475. https://doi.org/10.1111/j.1469-8137.2008.02422.x
  13. Chen, W. H., Tu, Y. J., Sheen, H. K. 2010, "Impact of dilute acid pretreatment on the structure of bagasse for producing bioethanol", Int. J. Energy Res., Vol. 34, pp. 265-274. https://doi.org/10.1002/er.1566
  14. Chen, Y., Dong, B., Qin, W., Xiao, D. 2010, "Xylose and cellulose fractionation from corncob with three different strategies and separate fermentation of them to bioethanol", Bioresource Technology, Vol. 101, pp. 6994-6999. https://doi.org/10.1016/j.biortech.2010.03.132
  15. De la Hoz, A., Diaz-Ortiz, A., Moreno, A. 2005, "Microwaves in organic synthesis. Thermal and non-thermal microwave effects", Chem. Soc. Rev., Vol. 34, pp.164-168. https://doi.org/10.1039/b411438h
  16. Hu, Z. H., Wen, Z. Y. 2008, "Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment", Biochem. Eng. J., Vol. 38, pp. 369-378. https://doi.org/10.1016/j.bej.2007.08.001
  17. Ooshima, H., Aso, K., Harano, Y., Yamamoto, T. 1984, "Microwave treatment of cellulosic materials for their enzymatic hydrolysis", Biotechnol. Lett., Vol. 6, pp. 289-294. https://doi.org/10.1007/BF00129056
  18. Li, J., Yang, Y., Chen, H., Jiang, F., Ling, J., Liu, M. 2009, "Comparison of saccharification process by acid and microwave-assisted acid pretreated swine manure", Bioproc. Biosyst. Eng., Vol. 32, pp. 649-654. https://doi.org/10.1007/s00449-008-0288-3
  19. Lu, X., Xi, B., Zhang, Y., Angelidaki, I. 2011, "Microwave pretreatment of rape straw for bioethanol production: focus on energy efficiency", Bioresource Technology, Vol. 102, pp. 7937-7940. https://doi.org/10.1016/j.biortech.2011.06.065
  20. 나춘기, 송명기, 손창인, 2011, "산 가수분해와 발효에 의한 해조류로부터 에탄올 생산", 신재생에너지, Vol. 7(3), pp. 6-16. https://doi.org/10.7849/ksnre.2011.7.3.006
  21. 나춘기, 송명기, 2012, "다시마의 산 가수분해와 에탄올 발효 특성", Korean Chem. Eng. Res., Vol. 50(1), pp. 141-148. https://doi.org/10.9713/kcer.2012.50.1.141
  22. Miller, G. L. 1959, "Use of dinitrosalicylic acid reagent for the determination of reducing sugars", Anal. Chem., Vol. 31, pp. 426-428. https://doi.org/10.1021/ac60147a030
  23. 이성목, 이재화, 2010, "산 농도 및 염 농도가 다시마 에탄올 발효에 미치는 영향", Appl. Chem. Eng., Vol. 21, pp. 154-161.
  24. Wang, X., Liu, X., Wang, G. 2011, "Two-stage hydrolysis of invasive algal feedstock for ethanol fermentation", J. Integrative Plant Biology, Vol. 53(3), pp. 246-252. https://doi.org/10.1111/j.1744-7909.2010.01024.x
  25. Kloareg, B., Quatrano, R. S. 1998, "Structure of the cell walls of marine algae and ecophysical functions of the matrix polysaccharides", Oceanogr. Mar. Biol. Ann. Rev., Vol. 26, pp. 259-315.
  26. Percival, E. 1979, "The polysaccharides of green, red and brown seaweeds: Their basic structure, biosynthesis and functions", British Phycological Journal, Vol. 14, pp. 103-117. https://doi.org/10.1080/00071617900650121
  27. Horn, S. J., Aasen, I. M., Ostgaard, K. 2000, "Production of ethanol from mannitol by Zymobacter palmae", J. Ind. Microbiol. Biotechnol., Vol. 24, pp. 51-57. https://doi.org/10.1038/sj.jim.2900771