• Title/Summary/Keyword: accelerated stress test

Search Result 295, Processing Time 0.025 seconds

Optimal Design of Accelerated Degradation Tests with Two Stress Variables in the Case that the Degradation Characteristic Follows Weibull Distribution (열화특성치가 와이블분포를 따르는 경우 두 가지 스트레스 변수를 고려한 가속열화시험의 최적 설계)

  • Lim, Heonsang;Kim, Yong Soo
    • Journal of Applied Reliability
    • /
    • v.13 no.2
    • /
    • pp.87-98
    • /
    • 2013
  • Accelerated degradation tests (ADTs) measuring failure-related degradation characteristic at the accelerated condition are widely used to assess the reliability of highly reliable products. Often, however, little degradation could be observed even in single-stress ADTs due to the high reliability of test unit, and as a result poor estimate of the reliability may be obtained. ADTs with multiple stress variables can be employed to overcome such difficulties. In this paper, optimal ADT plans with two stress variables are developed assuming that the degradation characteristic follows Weibull distribution by determining the stress levels, the proportion of test units allocated to each stress level such that the asymptotic variance of the maximum likelihood estimator of the q-th quantile of the lifetime distribution at the use condition is minimized.

Exponentiality Test of the Three Step-Stress Accelerated Life Testing Model based on Kullback-Leibler Information

  • Park, Byung-Gu;Yoon, Sang-Chul;Lee, Jeong-Eun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.4
    • /
    • pp.951-963
    • /
    • 2003
  • In this paper, we propose goodness of fit test statistics based on the estimated Kullback-Leibler information functions using the data from three step stress accelerated life test. This acceleration model is assumed to be a tampered random variable model. The power of the proposed test under various alternatives is compared with Kolmogorov-Smirnov statistic, Cramer-von Mises statistic and Anderson-Darling statistic.

  • PDF

A Practical Method for Automotive Accelerated Life Test

  • Won Jung;Lee, Ik-seong
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2001.05a
    • /
    • pp.129-133
    • /
    • 2001
  • Accelerated life test is a viable method for identifying failure modes, incorporating design changes on an on-going basis during the early stages of automotive development program. The information from tests at high stress levels is extrapolated to obtain estimate of life at normal stress levels. This paper presents a practical method for accelerated life test to achieve a specified accuracy in estimating life at a design stress. Recommended and optimum plan are presented and the plans are illustrated with a simulated test data for the automotive power element example.

  • PDF

On Estimating of Kullback-Leibler Information Function using Three Step Stress Accelerated Life Test

  • Park, Byung-Gu;Yoon, Sang-Chul;Cho, Ji-Young
    • International Journal of Reliability and Applications
    • /
    • v.1 no.2
    • /
    • pp.155-165
    • /
    • 2000
  • In this paper, we propose some estimators of Kullback- Leibler Information functions using the data from three step stress accelerated life tests. This acceleration model is assumed to be a tampered random variable model. Some asymptotic properties of proposed estimators are proved. Simulations are performed for comparing the small sample properties of the proposed estimators under use condition of accelerated life test.

  • PDF

Design of ramp-stress accelerated life test plans for a parallel system with two independent components using masked data

  • Srivastava, P.W.;Savita, Savita
    • International Journal of Reliability and Applications
    • /
    • v.18 no.2
    • /
    • pp.45-63
    • /
    • 2017
  • In this paper, we have formulated optimum Accelerated Life Test (ALT) plan for a parallel system with two independent components using masked data with ramp-stress loading scheme and Type-I censoring. Consider a system of two independent and non-identical components connected in parallel. Such a system fails whenever all of its components has failed. The exact component that causes the system to fail is often unknown due to cost and time constraint. For each parallel system at test, we observe its system's failure time and a set of component that includes the component actually causing the system to fail. The stress-life relationship is modelled using inverse power law, and cumulative exposure model is assumed to model the effect of changing stress. The optimal plan consists in finding out the optimum stress rate using D-optimality criterion. The method developed has been explained using a numerical example and sensitivity analysis carried out.

  • PDF

Planning Practical Multiple-Stress Accelerated Life Tests (실용적 복합 가속수명시험 계획의 개발)

  • Bae, Bong-Soo;Seo, Sun-Keun
    • Journal of Applied Reliability
    • /
    • v.17 no.2
    • /
    • pp.112-121
    • /
    • 2017
  • Purpose: The most previous works on designing accelerated life tests (ALTs) are focused on the application of a single stress. Because of the difficulty to obtain the sufficient information in a reasonable duration using single stress only, there is needed in practice to use multiple-stress ALTs frequently. This paper presents new practical plans with two stresses for Weibull distribution. Methods: The four-level practical plans based on rectangle test region are proposed and compared with the corresponding three-level statistically optimal plans. Sensitivity analyses for assumed design parameters and life-stress relationship are conducted. Results: A procedure to choose practical ALT plans is illustrated with a numerical example and guidelines for planning two-stress ALTs are provided. Conclusion: The proposed two-stress ALT plans on practical constraints to assess a quantile of Weibull lifetime distribution at the use condition are efficient and robust.

Study on Acceleration Factor Model with Accelerated Stress Interactions (가속 스트레스의 교호작용을 고려한 가속계수 모델에 대한 연구)

  • Kim, Hyoung-Eui;Kang, Bo-Sik;Cho, You-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.751-757
    • /
    • 2012
  • An accelerated life test (ALT) is a test method that forces components to fail more quickly than they would under use conditions by applying higher overstresses. When two or more accelerating stresses are involved in an ALT, an interaction effect may occur. In previous studies, mostly ALTs without considering an interaction of accelerated stresses and accelerated life models were proposed. The life data obtained are extrapolated using a life-stress relationship to estimate the life distribution at use conditions. We use the general log-linear relationship to model the dependence of life in the Weibull distribution on stress. Therefore, this study suggests the acceleration factor model between the lives at use conditions and accelerated conditions by using mechanical component life data considering an interaction effect. Further, the accelerated life test method and acceleration factor model proposed in this paper will be the basis for adopting an accelerated life test with accelerated stress interactions.

Accelerated Life Test Plans Based on Small Sample Property

  • Yun, Won Young
    • Journal of Korean Society for Quality Management
    • /
    • v.23 no.1
    • /
    • pp.41-49
    • /
    • 1995
  • This paper suggests optimal accelerated constant stress life tests in Exponential distribution. The relationship between the log-mean life and the loaded stress is assumed to be linear. Optimal plans considering mean square errors of maximum likelihood estimators of the log mean life and test costs are obtained. We consider accelerated life tests with two stress levels, and as data types, failure censoring( type II) and time censoring(type I) data are used. We propose the procedure to obtain the optimal plans for each case. Some examples are also included.

  • PDF

Investigation into the Worst Stress Condition for an Accelerated Life Test of a Compressor in Refrigerators - Acceleration Factor and the Reducible Test Time under Low Temperature - (냉장고용 압축기의 가속수명시험을 위한 가혹조건 탐색 - 저온 가혹조건에서의 가속계수와 단축 시험기간 -)

  • Jung, Y.M.;Joo, W.J.;Jeong, S.K.
    • Journal of Power System Engineering
    • /
    • v.16 no.2
    • /
    • pp.43-48
    • /
    • 2012
  • Generally accelerated life test is well known as one method to reduce reliability qualification test period. This test is conducted under the higher stress condition than normal condition. So it can save the test time by calculating the acceleration factor from the relationship between the worst stress condition and normal condition. This paper investigates the worst stress condition for the accelerated life test to increase the acceleration factor. Especially, we focused on the method to obtain effective acceleration factors under the worst stress condition. Moreover, we considered how to decide the worst stress condition by looking for the operating limit of this system. The acceleration factor can be estimated from the ratio of the kinematic viscosity in the normal condition and the worst stress condition, the lowest temperature, by using Arrhenius relationship. Through some experiments for a refrigerator's compressor, we were able to confirm how to increase acceleration factors and how to reduce the reliability qualification test period with minimum samples.

Evaluation of the Degradation Trend of the Polyurethane Resilient Pad in the Rail Fastening System by Multi-stress Accelerated Degradation Test (복합가속열화시험을 통한 레일체결장치 폴리우레탄 탄성패드의 열화 경향 분석)

  • Sung, Deok-Yong;Park, Kwang-Hwa
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.6
    • /
    • pp.466-472
    • /
    • 2013
  • The use of a concrete track is gradually growing in urban and high-speed railways in many part of the world. The resilient pad, which is essentially when concrete tracks are used, plays the important role of relieving the impact caused by train loads. The simple fatigue test[1] to estimate the variable stiffness of resilient pads is usually performed, but it differs depending on the practical conditions of different railways. In this study, the static stiffness levels of used resilient pads according to passing tonnages levels were measured in laboratory tests. Also, the simple fatigue test and the multi-stress accelerated degradation test for new resilient pads were performed in a laboratory. The static stiffness of the used pad was compared with the results of tests of usage times and cycles. The results of the comparison showed that the variable static stiffness levels of the used pad were similar to results of the multi-stress accelerated degradation test considering the fatigue and heat load. With a T-NT equation related to the degree of the multi-stress accelerated degradation, a model of multi-stress accelerated degradation for a resilient pad was devised. It was found through this effort that the total acceleration factor was approximately 2.62. Finally, this study proposes an equation for a multi-stress accelerated degradation model for polyurethane resilient pads.