• 제목/요약/키워드: abelian group

검색결과 154건 처리시간 0.026초

THE IDEAL CLASS GROUP OF POLYNOMIAL OVERRINGS OF THE RING OF INTEGERS

  • Chang, Gyu Whan
    • 대한수학회지
    • /
    • 제59권3호
    • /
    • pp.571-594
    • /
    • 2022
  • Let D be an integral domain with quotient field K, Pic(D) be the ideal class group of D, and X be an indeterminate. A polynomial overring of D means a subring of K[X] containing D[X]. In this paper, we study almost Dedekind domains which are polynomial overrings of a principal ideal domain D, defined by the intersection of K[X] and rank-one discrete valuation rings with quotient field K(X), and their ideal class groups. Next, let ℤ be the ring of integers, ℚ be the field of rational numbers, and 𝔊f be the set of finitely generated abelian groups (up to isomorphism). As an application, among other things, we show that there exists an overring R of ℤ[X] such that (i) R is a Bezout domain, (ii) R∩ℚ[X] is an almost Dedekind domain, (iii) Pic(R∩ℚ[X]) = $\oplus_{G{\in}G_{f}}$ G, (iv) for each G ∈ 𝔊f, there is a multiplicative subset S of ℤ such that RS ∩ ℚ[X] is a Dedekind domain with Pic(RS ∩ ℚ[X]) = G, and (v) every invertible integral ideal I of R ∩ ℚ[X] can be written uniquely as I = XnQe11···Qekk for some integer n ≥ 0, maximal ideals Qi of R∩ℚ[X], and integers ei ≠ 0. We also completely characterize the almost Dedekind polynomial overrings of ℤ containing Int(ℤ).

QUANTUM MARKOVIAN SEMIGROUPS ON QUANTUM SPIN SYSTEMS: GLAUBER DYNAMICS

  • Choi, Veni;Ko, Chul-Ki;Park, Yong-Moon
    • 대한수학회지
    • /
    • 제45권4호
    • /
    • pp.1075-1087
    • /
    • 2008
  • We study a class of KMS-symmetric quantum Markovian semigroups on a quantum spin system ($\mathcal{A},{\tau},{\omega}$), where $\mathcal{A}$ is a quasi-local algebra, $\tau$ is a strongly continuous one parameter group of *-automorphisms of $\mathcal{A}$ and $\omega$ is a Gibbs state on $\mathcal{A}$. The semigroups can be considered as the extension of semi groups on the nontrivial abelian subalgebra. Let $\mathcal{H}$ be a Hilbert space corresponding to the GNS representation con structed from $\omega$. Using the general construction method of Dirichlet form developed in [8], we construct the symmetric Markovian semigroup $\{T_t\}{_t_\geq_0}$ on $\mathcal{H}$. The semigroup $\{T_t\}{_t_\geq_0}$ acts separately on two subspaces $\mathcal{H}_d$ and $\mathcal{H}_{od}$ of $\mathcal{H}$, where $\mathcal{H}_d$ is the diagonal subspace and $\mathcal{H}_{od}$ is the off-diagonal subspace, $\mathcal{H}=\mathcal{H}_d\;{\bigoplus}\;\mathcal{H}_{od}$. The restriction of the semigroup $\{T_t\}{_t_\geq_0}$ on $\mathcal{H}_d$ is Glauber dynamics, and for any ${\eta}{\in}\mathcal{H}_{od}$, $T_t{\eta}$, decays to zero exponentially fast as t approaches to the infinity.

Inversion-like and Major-like Statistics of an Ordered Partition of a Multiset

  • Choi, Seung-Il
    • Kyungpook Mathematical Journal
    • /
    • 제56권3호
    • /
    • pp.657-668
    • /
    • 2016
  • Given a partition ${\lambda}=({\lambda}_1,{\lambda}_2,{\ldots},{\lambda}_l)$ of a positive integer n, let Tab(${\lambda}$, k) be the set of all tabloids of shape ${\lambda}$ whose weights range over the set of all k-compositions of n and ${\mathcal{OP}}^k_{\lambda}_{rev}$ the set of all ordered partitions into k blocks of the multiset $\{1^{{\lambda}_l}2^{{\lambda}_{l-1}}{\cdots}l^{{\lambda}_1}\}$. In [2], Butler introduced an inversion-like statistic on Tab(${\lambda}$, k) to show that the rank-selected $M{\ddot{o}}bius$ invariant arising from the subgroup lattice of a finite abelian p-group of type ${\lambda}$ has nonnegative coefficients as a polynomial in p. In this paper, we introduce an inversion-like statistic on the set of ordered partitions of a multiset and construct an inversion-preserving bijection between Tab(${\lambda}$, k) and ${\mathcal{OP}}^k_{\hat{\lambda}}$. When k = 2, we also introduce a major-like statistic on Tab(${\lambda}$, 2) and study its connection to the inversion statistic due to Butler.

ON THE DIRECT PRODUCTS AND SUMS OF PRESHEAVES

  • PARK, WON-SUN
    • 호남수학학술지
    • /
    • 제1권1호
    • /
    • pp.21-25
    • /
    • 1979
  • Abelian군(群)의 presheaf에 관한 직적(直積)과 직화(直和)를 Category 입장에서 정의(定義)하고 presheaf $F_{\lambda}\;({\lambda}{\epsilon}{\Lambda})$들의 두 직적(直積)(또는 直和)은 서로 동형적(同型的) 관계(關係)에 있으며, 특히 ${\phi}:X{\rightarrow}Y$가 homeomorphism이라 하고 ${\phi}_*F$를 X상(上)의 presheaf F의 direct image이라 하면 (1) $({\phi}_*F, \;{\phi}_*(f_{\lambda})_{{\lambda}{\epsilon}{\Lambda}})$$({\phi}_*F_{\lambda})_{{\lambda}{\epsilon}{\Lambda}}$의 직적(直積)일 때 오직 그때 한하여 $(F,\;(f_{\lambda})_{{\lambda}{\epsilon}{\Lambda}})$$(F_{\lambda})_{{\lambda}{\epsilon}{\Lambda}})$의 직적(直積)이다. (2) $({\phi}_*F,\;{\phi}_*(l_{\lambda})_{{\lambda}{\epsilon}{\Lambda}})$$({\phi}_*F_{\lambda})_{{\lambda}{\epsilon}{\Lambda}}$의 직화(直和)일 때 오직 그때 한하여 $(F,\;(l_{\lambda})_{{\lambda}{\epsilon}{\Lambda}})$$(F_{\lambda})_{{\lambda}{\epsilon}{\Lambda}})$의 직화(直和)이다. Let $(F_{\lambda})_{{\lambda}{\epsilon}{\Lambda}})$ be an indexed set of presheaves of abelian group on topological space X. We can define the cartesian product $$\prod_{{\lambda}{\epsilon}{\Lambda}}\;F_{\lambda}$$ of $(F_{\lambda})_{{\lambda}{\epsilon}{\Lambda}})$ by $$(\prod_{{\lambda}{\epsilon}{\Lambda}}\;F_{\lambda})(U)=\prod_{{\lambda}{\epsilon}{\Lambda}}(F_{\lambda}(U))$$ for U open in X $${\rho}_v^u:\;(\prod_{{\lambda}{\epsilon}{\Lambda}}\;F_{\lambda})(U){\rightarrow}(\prod_{{\lambda}{\epsilon}{\Lambda}}\;F_{\lambda})(V)((s_{\lambda})_{{\lambda}{\epsilon}{\Lambda}}{\rightarrow}(_{\lambda}{\rho}_v^u(s_{\lambda}))_{{\lambda}{\epsilon}{\Lambda}})$$ for $V{\subseteq}U$ open in X where $_{\lambda}{\rho}^U_V$ is a restriction of $F_{\lambda}$, And we have natural presheaf morphisms ${\pi}_{\lambda}$ and ${\iota}_{\lambda}$ such that ${\pi}_{\lambda}(U):\;({\prod}_\;F_{\lambda})(U){\rightarrow}F_{\lambda}(U)((s_{\lambda})_{{\lambda}{\epsilon}{\Lambda}}{\rightarrow}s_{\lambda})$ ${\iota}_{\lambda}(U):\;F_{\lambda}(U){\rightarrow}({\prod}\;F_{\lambda})(U)(s_{\lambda}{\rightarrow}(o,o,{\cdots}\;{\cdots}o,s_{\lambda},o,{\cdots}\;{\cdots}o)$ for $(s_{\lambda}){\epsilon}{\prod}_{\lambda}\;F_{\lambda}(U)$ and $(s_{\lambda}){\epsilon}F_{\lambda}(U)$.

  • PDF