ON THE DIRECT PRODUCTS AND SUMS OF PRESHEAVES

WON-SUN PARK

ABSTRACT

Abelian群의 presheaf에 관한 直續과 直和를 Category 입장에서 定義하고 presheaf F_1 ($\lambda \epsilon \Lambda$)들의 두 直積(또는 直和)은 서로 同型的 關係에 있으며, 특히 $\phi: X \rightarrow Y$ 가 homeomorphism이라 하고 $\phi_* F$ 를 X 는의 presheaf F의 direct image이라 하면

- (1) (φ*F, φ*(f*))λεΛ)가 (φ*F*)λεΛ의 直積일 때 오직 그때 한하여 (F, (f*)λεΛ)는
 (F*)λεΛ의 直積이다.
- (2) (ϕ_*F , $\phi_*(c_\lambda)_{\lambda\in\Lambda}$)가 (ϕ_*F_λ) $_{\lambda\in\Lambda}$ 의 直和일 때 오직 그때 한하여 (F, $(c_\lambda)_{\lambda\in\Lambda}$)는 (F_λ) $_{\lambda\in\Lambda}$ 의 直和이다.

Let $(F_{\lambda})_{\lambda \in \Lambda}$ be an indexed set of presheaves of abelian group on topological space X. We can define the cartesian product $\prod_{i \in \Lambda} F_{\lambda}$ of $(F_{\lambda})_{\lambda \in \Lambda}$ by

$$(\prod_{\lambda \in A} F_{\lambda}) (U) = \prod_{\lambda \in A} (F_{\lambda} (U))$$
 for U open in X

$$\rho_{V}^{U}: (\prod_{\lambda \in \Lambda} F_{\lambda}) (U) \longrightarrow (\prod_{\lambda \in \Lambda} F_{\lambda}) (V) ((s_{\lambda})_{\lambda \in \Lambda}) \longrightarrow ({}_{\lambda}\rho_{V}^{U}(s_{\lambda}))_{\lambda \in \Lambda})$$

for $V \subseteq U$ open in X where ${}_{\lambda}\rho_{V}^{U}$ is a restriction of F_{λ} . And we have natural presheaf morphisms π_{λ} and ι_{λ} such that

$$\pi_{\lambda}(U): (I F_{\lambda}) (U) \longrightarrow F_{\lambda} (U) ((s_{\lambda})_{1 \in \Lambda} \longrightarrow s_{\lambda})$$

$$\iota_{\lambda}(U): F_{\lambda}(U) \longrightarrow (I F_{\lambda}) (U) (s_{\lambda} \longrightarrow (o, o, \dots, o, s_{\lambda}, o, \dots, o))$$

for $(s_{\lambda}) \in \mathbb{I} F_{\lambda}(U)$ and $s_{\lambda} \in F_{\lambda}(U)$

PROPOSITION 1. Let $(F_{\lambda})_{\lambda \in \Lambda}$ be an indexed set of presheaves of abelian group on topological space X. Let G be a presheaf of abelian group on X and $(f_{\lambda})_{\lambda \in \Lambda}$ be an indexed set of presheaf morphisms $f_{\lambda}: G \to F_{\lambda}$. Then there exists a unique presheaf morphism $f: G \to I\!\!I F_{\lambda}$ such that for each $\lambda \in \Lambda$, the following diagram

commutes.

PROOF. For each $s \in G(U)$, define $F(U) : G(U) \longrightarrow (IIF_{\lambda})(U)$ by $\pi_{\lambda}(U) f(U)(s) = f_{\lambda}(U)(s)$, $(\lambda \in \Lambda)$. Since $\pi_{\lambda}(U)$ and $f_{\lambda}(U)$ are homomorphism $f(U) : s \longrightarrow f(U)(s)$ defines a homomorphism $G(U) \longrightarrow (IIF_{\lambda})(U)$, Suppose that $g : G \longrightarrow IIF_{\lambda}$ is another presheaf morphism such that $\pi_{\lambda}g = f$ for all $\lambda \in \Lambda$. Then for each $s \in G(U)$ and $\lambda \in \Lambda$, we have $\pi_{\lambda}(U)(s) = \pi_{\lambda}(U)(s)$ so g(U)(s) = f(U)(s). Thus g = f.

DEFINITION. Let $(F_{\lambda})_{\lambda \in \Lambda}$ be an indexed set of presheaves of abelian group on topological space X. A pair $(F, (P_{\lambda})_{\lambda \in \Lambda})$ consisting of a presheaf F on X and presheaf morphism $P_{\lambda} \colon F \longrightarrow F_{\lambda}$ is called a direct product of $(F_{\lambda})_{\lambda \in \Lambda}$, if there exists unique presheaf morphism $f : G \longrightarrow F$ such that $f_{\lambda} = p_{\lambda} f$ for each preshaf G on X and each set of presheaf morphisms $f_{\lambda} : G \longrightarrow F_{\lambda}$.

From poroposition 1, $(IIF_{\lambda}, (\pi_{\lambda})_{\lambda \in \Lambda})$ is a direct product of $(F_{\lambda})_{\lambda \in \Lambda}$.

THEOREM 1. Let $(F_{\lambda})_{\lambda \in \Lambda}$ be an indexed set of presheaves of abelian group on topological space X. Let $(F, (p_{\lambda})_{\lambda \in \Lambda})$ be a direct product of $(F_{\lambda})_{\lambda \in \Lambda}$. Then a pair $(G, (q_{\lambda})_{\lambda \in \Lambda})$, where each $q_{\lambda}: G \longrightarrow F_{\lambda}$ is a presheaf morphism, is also a direct product of $(F_{\lambda})_{\lambda \in \Lambda}$ iff there exists a (necessarily unique) isomorphism $p: G \longrightarrow F$ such that for each $\lambda \in \Lambda$, the following diagram

commutes.

PROOF. Since $(F, (p_{\lambda})_{\lambda \in \Lambda})$ is a direct product, there is a unique presheaf morphism $p: G \longrightarrow F$ with $p_{\lambda}(U) p(U) = q_{\lambda}(U)$ for U open in X and each $\lambda \in \Lambda$.

- (\Rightarrow) If $(G, q_{\lambda})_{\lambda \in \Lambda}$ is direct product of $(F_{\lambda})_{\lambda \in \Lambda}$, then there is a unique presheaf morphism $p': F \longrightarrow G$ whth $q_{\lambda}(U) p'(U) = p_{\lambda}(U)$ for each $\lambda \in \Lambda$. Then $q_{\lambda}(U) = p_{\lambda}(U) p(U) = q_{\lambda} p'(U) p(U) = I_{G(U)}$. Similarly, $p(U)p'(U) = I_{F(U)}$.
- (\subset) If $f_{\lambda}: H \longrightarrow F_{\lambda}$, $(\lambda \in \Lambda)$. are presheaf morphism, then there exists a unique presheaf morphism $h: H \longrightarrow F$ with $p_{\lambda}(U)h(U) = f_{\lambda}(U)$ for each $\lambda \in \Lambda$ since $(F, (p_{\lambda})_{\lambda \in \Lambda})$ is a direct product. Since p is an isomorphism, there exists a presheaf morphism $r: G \longrightarrow F$ with $p(U)r(U) = I_{G(U)}$ and $r(U)p(U) = I_{F(U)}$. Let us take

$$f(U)=r(U)h(U):H(U)\longrightarrow G(U)$$

Then $f: H \longrightarrow G$ is a presheaf morphism and $q_{\lambda}(U)f(U) = q_{\lambda}(U)r(U)h(U) = p_{\lambda}(U) h(U)$ = $f_{\lambda}(U)$. So that $(G, (q_{\lambda})_{\lambda t \Lambda})$ is a direct product.

DEFINITION. Let $(F_{\lambda})_{\lambda \in \Lambda}$ be an indexed set of presheaves of abelian group on

topological space X. A pair $(F, (j_{\lambda})_{\lambda \in \Lambda})$ consisting of a presheaf F on X and presheaf morphism $j_{\lambda}: F_{\lambda} \longrightarrow F$ ($\lambda \in \Lambda$) is called a direct sum of $(F_{\lambda})_{\lambda \in \Lambda}$ if there exists a unique presheaf morphism $f: F \longrightarrow G$ such that $f_{\lambda}(U) = f(U)j_{\lambda}(U)$ for each presheaf G on X and each set of presheaf morphism $f_{\lambda}: F_{\lambda} \longrightarrow G$.

Following theorem is the dual of therem 1

THEOREM 2. theorem 1, Let $(F_{\lambda})_{\lambda \in \Lambda}$ be an indexed set of presheaves of abelian group on topological space X. Let $(F(j_{\lambda})_{\lambda \in \Lambda})$ be a direct sum of $(F_{\lambda})_{\lambda \in \Lambda}$. Then a pair $(G, (i_{\lambda})_{\lambda \in \Lambda})$, where $i_{\lambda}: F_{\lambda} \longrightarrow G (\lambda \in \Lambda)$, is a presheaf morphism, is also direct sum of $(F_{\lambda})_{\lambda \in \Lambda}$ iff there exists a (necessarily unique) isomorphism $j: F \longrightarrow G$ such that for each $\lambda \in \Lambda$ the following diagram

commutes.

Let $(F_{\lambda})_{\lambda \in A}$ be an indexed set of presheaves of abilian group on topological space X. We can define a presheaf $\bigoplus F_{\lambda}$ by

$$(\bigoplus_{\lambda \in \Lambda} F_{\lambda})$$
 $(U) = \bigoplus_{\lambda \in \Lambda} (F_{\lambda}(U) \text{ for } U \text{ open in } X.$

$$\rho_{V}^{U}: (\bigoplus_{i \in I} F_{\lambda}) (U) \longrightarrow (\bigoplus_{i \in I} F_{\lambda}) (V) (s_{\lambda})_{\lambda \in \Lambda} \longrightarrow ({}_{\lambda} \rho_{V}^{U}(s)_{\lambda \in \Lambda})$$

for $V \subseteq U$ open in X. where ${}_{\lambda}\rho_{V}^{U}$ is a restriction of F_{λ} . We have presheaf morphism c_{λ} and π_{λ} such that

$$\ell_{\lambda}(U): F_{\lambda}(U) \longrightarrow (\bigoplus F_{\lambda}) (U) (s_{\lambda} \longrightarrow (o, o, \dots, o, s_{\lambda}, o, \dots, o)$$

 $\pi_{\lambda}(U): (\bigoplus F_{\lambda}) (U) \longrightarrow F_{\lambda}(U) ((s_{\lambda})_{\lambda \in \Lambda} \longrightarrow s_{\lambda})$

PROPOSITION 2. Let $(F_{\lambda})_{\lambda \in \Lambda}$ be an indexed set of presheaves of abelian group on topological space X. Let G be a presheaf abelian groupon X and $(f_{\lambda})_{\lambda \in \Lambda}$ be an indexed set of presheaf morphism $f_{\lambda}: F_{\lambda} \to G$ for $\lambda \in \Lambda$. Then there exists a unique presheaf morphism $f: \bigoplus F_{\lambda} \to G$ such that the following diagram

commutes fore each $\lambda \epsilon A$.

PROOF For each $s \in \bigoplus F_{\lambda}(U)$, let $A(s) = \{\lambda \in A \mid \pi_{\lambda}(U) \ (s) = 0\}$. Define $f : \bigoplus F_{\lambda} \longrightarrow G$ by $f(U)(s) = \sum_{\lambda \in A} f_{\lambda}(U) \pi_{\lambda}(U)(s)$. Then f is a unique presheaf morphism such that f(t) = f.

From proposition 2, $(\bigoplus F_{\lambda}, (\iota_{\lambda})_{\lambda \in \Lambda})$ is a direct sum of $(F_{\lambda})_{\lambda \in \Lambda}$. Let $(F^{\chi})_{\lambda \in \Lambda}$ be an indexed set of presheaves on topological space X and $(G_{\lambda})_{\lambda \in \Lambda}$ be second indexed set of presheaves on X. Let $f_{\lambda}: F_{\lambda} \longrightarrow G_{\lambda}$ be presheaf morphism for each $\lambda \in \Lambda$. If $(F, (p_{\lambda})_{\lambda \in \Lambda})$ and $(G, (p_{\lambda}')_{\lambda \in \Lambda})$ are direct product of $(F_{\lambda})_{\lambda \in \Lambda}$ and $(G_{\lambda})_{\lambda \in \Lambda}$ respectively, then it is easy to see that there exists a unique mopphisms $f: F \longrightarrow G$ such that $p_{\lambda}' f = f_{\lambda} p_{\lambda}(\lambda \in \Lambda)$

$$\begin{array}{c|c}
F & & f \\
\downarrow p_{\lambda} & & \downarrow p_{\lambda'} \\
F_{\lambda} & & & G_{\lambda}
\end{array}$$

Dually, if $(H,(j_{\lambda})_{\lambda\in\Lambda})$ and $(K,(j_{\lambda})_{\lambda\in\Lambda})$ are direct sum of $(F_{\lambda})_{\lambda\in\Lambda}$ and $(G_{\lambda})_{\lambda\in\Lambda}$ respectively, then there exists a unique morphism $h:H\to K$ such that $h,j_{\lambda}=j_{\lambda}'f_{\lambda}$ ($\lambda\in\Lambda$).

$$\begin{array}{c|c}
H & & h \\
j_{\lambda} & & \downarrow & \downarrow \\
f_{\lambda} & & f_{\lambda} & & \downarrow \\
F_{\lambda} & & & G_{\lambda}
\end{array}$$

Particulary, in case of direct product $(HF_{\lambda}, (\pi_{\lambda})_{\lambda \in \Lambda})$ and $(HG_{\lambda}, (\pi_{\lambda}')_{\lambda \in \Lambda})$ the unique morphism $f: HF_{\lambda} \longrightarrow HG_{\lambda}$ is

$$f(U): IIF_{\lambda}(U) \longrightarrow IIG_{\lambda}(U) ((x_{\lambda})_{\lambda \in \Lambda} \longrightarrow (f_{\lambda}(U)(x_{\lambda})_{\lambda \in \Lambda})$$

So that Im f(U) = II Im $f_{\lambda}(U)$, Ker f(U) = II Ker $f_{\lambda}(U)$. From Ker f(U) = II Ker $f_{\lambda}(U)$ = (II Ker $f_{\lambda})(U)$, kernal of f is a product of kernel of f_{λ} .

Suppose we are given a continuous map $\varphi: X \to Y$ of topological spaces and a presheaf F on X, we obtain the direct image of F by φ (deneted by φ_*F). Given a continuous map φ , φ_* is a functor.

Let F and G be presheaves on X, $\varphi_*(F \times G)(U) = (F \times G)(\varphi^{-1}(U)) = F(\varphi^{-1}(U) \times G)$ $(\varphi^{-1}(U)) = (\varphi_*F)(U) \times (\varphi_*G)(U) = (\varphi_*F \times \varphi_*G)(U)$ for U open in Y and $\varphi_*(F \times G)(i) = (\varphi_*F \times \varphi_*G)(i)$ for $i: V \longrightarrow U$. Therefore $\varphi_*(F \times G) = \varphi_*F \times \varphi_*G$.

THEOREM 3. Let $\varphi: X \longrightarrow Y$ be a homeomorphism. Then

- (1) $(F, (f_{\lambda})_{\lambda \in \Lambda})$ is a direct product of $(F_{\lambda})_{\lambda \in \Lambda}$ iff $(\varphi_{*}(F), \varphi_{*}(f_{\lambda})_{\lambda \in \Lambda})$ is a direct product of $(\varphi_{*}F_{\lambda})_{\lambda \in \Lambda}$.
- (2) $(F, (\ell_{\lambda})_{\lambda \in \Lambda})$ is a direct sum of $(F_{\lambda})_{\lambda \in \Lambda}$ iff $(\varphi_{\#}F, \varphi_{\#}(\ell_{\lambda})_{\lambda \in \Lambda})$ is a direct sum of $(\varphi_{\#}F_{\lambda})_{\lambda \in \Lambda}$.

PROOF. We shall do (1) because the proof of (2) is dual. Since $\varphi: X \longrightarrow Y$ is a homeomorphism, there exist a continuous map $\Psi: Y \longrightarrow X$ such that $\Psi \varphi = I_X$, $\varphi \Psi = I_Y$. The Ψ_* is functor such that $\Psi_* \varphi_* = I$, $\varphi_* \Psi_* = I$.

 (\Rightarrow) . Suppose that $(F,(f_{\lambda})_{\lambda\in\Lambda})$ is a direct product of $(F_{\lambda})_{\lambda\in\Lambda}$. For each morphism $h_{\lambda}:H\longrightarrow \Phi_{*}F_{\lambda}$, there exists $\Psi_{*}(h_{\lambda}):\Psi_{*}H\longrightarrow F_{\lambda}$ and so there exists a unique morphism $f:\Psi_{*}H\longrightarrow F$ such that $\Psi_{*}(h_{\lambda})=f_{\lambda}f$ for $\lambda\in\Lambda$.

This $\phi_*(f)$ is such that $h_\lambda = \phi_*(f_\lambda) \phi_*(f)$ and is unique morphism $H \longrightarrow \phi_* F$ such that $h_\lambda = \phi_*(f_\lambda) \phi_*(f)$ for; If another morphism $h: H \to \phi F$ such that $h_\lambda = \phi_*(f_\lambda) h$, then $\Psi_*(h_\lambda) = f_\lambda \Psi_*(h) = f_\lambda f$.

From uniqueness of f, $\Psi_{\bullet}(h) = f$.

Therefore $h=\phi_*(f)$.

(4). Suppose that $(\phi_*F, \phi_*(f_\lambda)_{\lambda\in\Lambda})$ is a direct product of $(\phi_*F_\lambda)_{\lambda\in\Lambda}$. For each morphism $k_\lambda: K \to F_\lambda$, there exists a morphism $\phi_*(k_\lambda): \phi_*K \to \phi_*F_\lambda$ and there exists a unique morphism $k: \varphi_*K \to \phi_*F$ such that $\phi_*(k_\lambda) = \phi_*(f_\lambda) k$,

Therefore, there exists a unique morphism $\Psi_*(k):K\longrightarrow F$ such that $k_\lambda=f_\lambda^*\Psi_*(k)$ for each morphism $k_\lambda:K\longrightarrow F_\lambda$.

REFERENCES

- 1. G.E. Bredon: Sheaf Theory, McGraw-Hill Book Company (1965)
- 2. B.R. Tennsion: Sheat Theory, Cambridge University Press (1975)
- 3. R.G. Swon: Theory of Sheaves, University, Chicago Press (1964)
- 4. E.H. Spanier: Algebraic Topology, McGraw Hill Book Company (1966)
- 5. K. Lee: Cohomology with Coeffcients in Sheaves, Jounerl Japan of Japonica (1975)

Chonnam National University