• 제목/요약/키워드: abelian group

검색결과 154건 처리시간 0.025초

THE LOWER AUTOCENTRAL SERIES OF ABELIAN GROUPS

  • Moghaddam, Mohammad Reza R.;Parvaneh, Foroud;Naghshineh, Mohammad
    • 대한수학회보
    • /
    • 제48권1호
    • /
    • pp.79-83
    • /
    • 2011
  • In the present paper we introduce the lower autocentral series of autocommutator subgroups of a given group. Following our previous work on the subject in 2009, it is shown that every finite abelian group is isomorphic with $n^{th}$-term of the lower autocentral series of some finite abelian group.

NON-ABELIAN TENSOR ANALOGUES OF 2-AUTO ENGEL GROUPS

  • MOGHADDAM, MOHAMMAD REZA R.;SADEGHIFARD, MOHAMMAD JAVAD
    • 대한수학회보
    • /
    • 제52권4호
    • /
    • pp.1097-1105
    • /
    • 2015
  • The concept of tensor analogues of right 2-Engel elements in groups were defined and studied by Biddle and Kappe [1] and Moravec [9]. Using the automorphisms of a given group G, we introduce the notion of tensor analogue of 2-auto Engel elements in G and investigate their properties. Also the concept of $2_{\otimes}$-auto Engel groups is introduced and we prove that if G is a $2_{\otimes}$-auto Engel group, then $G{\otimes}$ Aut(G) is abelian. Finally, we construct a non-abelian 2-auto-Engel group G so that its non-abelian tensor product by Aut(G) is abelian.

GROUP ACTIONS IN A UNIT-REGULAR RING WITH COMMUTING IDEMPOTENTS

  • Han, Jun-Cheol
    • East Asian mathematical journal
    • /
    • 제25권4호
    • /
    • pp.433-440
    • /
    • 2009
  • Let R be a ring with unity, X the set of all nonzero, nonunits of R and G the group of all units of R. We will consider some group actions on X by G, the left (resp. right) regular action and the conjugate action. In this paper, by investigating these group actions we can have some results as follows: First, if E(R), the set of all nonzero nonunit idempotents of a unit-regular ring R, is commuting, then $o_{\ell}(x)\;=\;o_r(x)$, $o_c(x)\;=\;\{x\}$ for all $x\;{\in}\;X$ where $o_{\ell}(x)$ (resp. $o_r(x)$, $o_c(x)$) is the orbit of x under the left regular (resp. right regular, conjugate) action on X by G and R is abelian regular. Secondly, if R is a unit-regular ring with unity 1 such that G is a cyclic group and $2\;=\;1\;+\;1\;{\in}\;G$, then G is a finite group. Finally, if R is an abelian regular ring such that G is an abelian group, then R is a commutative ring.

A STRUCTURE OF NONCENTRAL IDEMPOTENTS

  • Cho, Eun-Kyung;Kwak, Tai Keun;Lee, Yang;Piao, Zhelin;Seo, Yeon Sook
    • 대한수학회보
    • /
    • 제55권1호
    • /
    • pp.25-40
    • /
    • 2018
  • We focus on the structure of the set of noncentral idempotents whose role is similar to one of central idempotents. We introduce the concept of quasi-Abelian rings which unit-regular rings satisfy. We first observe that the class of quasi-Abelian rings is seated between Abelian and direct finiteness. It is proved that a regular ring is directly finite if and only if it is quasi-Abelian. It is also shown that quasi-Abelian property is not left-right symmetric, but left-right symmetric when a given ring has an involution. Quasi-Abelian property is shown to do not pass to polynomial rings, comparing with Abelian property passing to polynomial rings.

ON THE TATE-SHAFAREVICH GROUPS OVER BIQUADRATIC EXTENSIONS

  • Yu, Hoseog
    • 호남수학학술지
    • /
    • 제37권1호
    • /
    • pp.1-6
    • /
    • 2015
  • Let A be an abelian variety defined over a number field K. Let L be a biquadratic extension of K with Galois group G and let III (A/K) and III(A/L) denote, respectively, the Tate-Shafarevich groups of A over K and over L. Assuming III(A/L) is finite, we compute [III(A/K)]/[III(A/L)] where [X] is the order of a finite abelian group X.

SOME REDUCED FREE PRODUCTS OF ABELIAN C*

  • Heo, Jae-Seong;Kim, Jeong-Hee
    • 대한수학회보
    • /
    • 제47권5호
    • /
    • pp.997-1000
    • /
    • 2010
  • We prove that the reduced free product of $k\;{\times}\;k$ matrix algebras over abelian $C^*$-algebras is not the minimal tensor product of reduced free products of $k\;{\times}\;k$ matrix algebras over abelian $C^*$-algebras. It is shown that the reduced group $C^*$-algebra associated with a group having the property T of Kazhdan is not isomorphic to a reduced free product of abelian $C^*$-algebras or the minimal tensor product of such reduced free products. The infinite tensor product of reduced free products of abelian $C^*$-algebras is not isomorphic to the tensor product of a nuclear $C^*$-algebra and a reduced free product of abelian $C^*$-algebra. We discuss the freeness of free product $II_1$-factors and solidity of free product $II_1$-factors weaker than that of Ozawa. We show that the freeness in a free product is related to the existence of Cartan subalgebras in free product $II_1$-factors. Finally, we give a free product factor which is not solid in the weak sense.

FIXED POING ALGEBRAS OF UHF-ALGEBRA $S^*$

  • Byun, Chang-Ho;Cho, Sung-Je;Lee, Sa-Ge
    • 대한수학회보
    • /
    • 제25권2호
    • /
    • pp.179-183
    • /
    • 1988
  • In this paper we study a $C^{*}$-dynamical system (A, G, .alpha.) where A is a UHF-algebra, G is a finite abelian group and .alpha. is a *-automorphic action of product type of G on A. In [2], A. Kishimoto considered the case G= $Z_{n}$, the cyclic group of order n and investigated a condition in order that the fixed point algebra $A^{\alpha}$ of A under the action .alpha. is UHF. In later N.J. Munch studied extremal tracial states on $A^{\alpha}$ by employing the method of A. Kishimoto [3], where G is a finite abelian group. Generally speaking, when G is compact (not necessarily discrete and abelian), $A^{\alpha}$ is an AF-algebra and its ideal structure was well analysed by N. Riedel [4]. Here we obtain some conditions for $A^{\alpha}$ to be UHF, where G is a finite abelian group, which is an extension of the result of A. Kishimoto.oto.

  • PDF