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GROUP ACTIONS IN A UNIT-REGULAR RING WITH
COMMUTING IDEMPOTENTS

JUNCHEOL HAN

ABSTRACT. Let R be a ring with unity, X the set of all nonzero, nonunits
of R and G the group of all units of R. We will consider some group
actions on X by G, the left (resp. right) regular action and the conjugate
action. In this paper, by investigating these group actions we can have
some results as follows: First, if F(R), the set of all nonzero nonunit
idempotents of a unit-regular ring R, is commuting, then oy(z) = o, (z),
oc(z) = {z} for all z € X where oy(z) (resp. or(z), oc(x)) is the orbit
of z under the left regular (resp. right regular, conjugate) action on
X by G and R is abelian regular. Secondly, if R is a unit-regular ring
with unity 1 such that G is a cyclic group and 2 =1 4+ 1 € G, then G is
a finite group. Finally, if R is an abelian regular ring such that G is an
abelian group, then R is a commutative ring.

1. Introduction and basic definitions

Let R be a ring with unity, X the set of all nonzero, nonunits of R and G the
group of all units of R. In this paper, we will consider some group actions of G
on X. We call the action, ((g,7) — gx) (resp. ((g,7) — xg™ 1), ((g,2) —
grg~1)) from G x X to X, left regular (resp. right regular, conjugate) action.
If : G x X — X is one of the above group actions, then for each z € X
we define the orbit of x by o(z) = {¢(g,x) : ¢ € G} and stabilizer of x by
stab(xz) = {g € G : ¢(g,x) = x}. Recall that G is transitive on X (or G acts
transitively on X) if there is an # € X with o(z) = X and the group action on
X by G is trivial if o(z) = {z} for all z € X.

A ring R is von Neumann regular (or simply reqular) (resp. unit-regular)
provided that for any a € R there exists an element r € R (resp. u € G) such
that @ = ara (resp. a = aua). A ring R is strongly regular provided that for
any a € R there exists an element r € R such that a = ra®. Also a ring R
is abelian provided all idempotents in R are central. It is known [1] that R is
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an abelian regular ring if and only if R is strongly regular and that an abelian
regular ring is unit-regular.

Throughout this paper, unless stated otherwise, R is a ring with unity 1, G
is the group of all units of R and X is the set of all nonzero, nonunits in R.
Also for each x € X, oy(x) (resp. o.(x), o.(x)) is considered as the orbit of z
under the left regular (resp. right regular, conjugate) action of G on X. Let
E(R) be the set of all nonzero, nonunit idempotents of R. Recall that E(R) is
said to be commuting if ef = fe for all e, f € E(R). We use | | to denote the
cardinality of a set.

It was shown in [3, Lemma 2.3, Theorem 3.3] that R is unit-regular if and
only if every orbit under the left regular action is os(e) for some idempotent
e € X and that if R is a unit-regular ring such that G is a cyclic group and 2
=1+ 1 € G, then the orbit oy(e) is finite. In Section 2, we show that (1) if
R is a unit-regular ring such that F(R) is commuting, then (1) os(x) = o,(x)
for all z € X and R is abelian regular ring; (2) if for a ring R such that G is a
cyclic group and 2 = 1 4+ 1 € G there exists an idempotent e € X such that
2¢ = (1+ 1)e # 0, then o4(1 — e) (resp. o.(1 — e)) is finite; (3) if X # @ for
a unit-regular ring R such that G is a cyclic group and 2 =1 + 1 € G, then
G is finite. We also show that if R is an abelian regular ring such that F(R)
is finite, then R is isomorphic to the direct sum of a finite number of division
rings.

It was shown in [3, Theorem 3.2] that if R is a unit-regular ring with unity
1 such that G is abelian and 2 = 1 4+ 1 € G, then R is a commutative ring. In
Section 3, we show that if R is a ring with unity such that E(R) is commuting,
then oc(e) = {e} for all e € E(R), i.e., ge = eg for all g € G. By using this
result we also show that if R is an abelian regular ring such that G is abelian,
then R is a commutative ring.

2. Regular action in unit-regular rings

Recall that a nonzero element a in a ring R is said to be a right zero—divisor
if there exists a nonzero b € R such that ba = 0.

The following theorem has been proved in [2]:

Theorem 2.1. Let R be a ring such that X is a finite union of orbits under
the left reqular action on X by G. Then X is the set of all right zero-divisors
of R. Moreover, if X is a nonempty finite set, then R is a finite ring.

Proof. Refer [2, Theorem 2.2]. O

Lemma 2.2. Let R be a unit-reqular ring. Then for all x € X, x is a zero-
divisor.

Proof. Since R is a unit-regular ring, for x € X there exists an element g € G
with = zgx, and so z(gx — 1) =0 = (zg — 1)z. If gz — 1 € G, then z =0,
which is a contradiction. If gz —1 = 0, then gz = 1, and so z = g~ ! € G,
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which is also a contradiction. Thus gz —1 € X. Similarly, we have zg—1 € X.
Hence x is a zero-divisor. O

Lemma 2.3. The ring R is unit-regular if and only if every orbit under the
left regular action is o¢(€) for some idempotent e € X .

Proof. Refer [3, Lemma 2.3]. O

Corollary 2.4. The ring R is unit-reqular if and only if every orbit under the
right regular action is o,.(e) for some idempotent e € X.

Proof. Tt follows by an argument similar to that in the proof of [3, Lemma
2.3]. O

Remark 1. Note that if R is a noncommutative ring, then op(x) # o,(z) for

some x € X. For example, let R = <§2 §2> be the ring of 2 x 2 matrices
2 Lo
over Zs, a galois field of order 2, and take z = (1) 8 € X. Then o¢(z) =

(60 2L 916 D€ 9.6 )

Lemma 2.5. If E(R) is commuting, then os(e) N E(R) = {e} (resp. or(e) N
E(R) = {e}) for alle € E(R).

Proof. Let e; € og(e)NE(R). Then e; = ge for some g € G. Thus eje = (ge)e =
ge = e1. Since e = gflel, e = ee;. Since F(R) is commuting, e = ee; = e1e =
e1. Hence og(e) N E(R) = {e}. Similarly, we have o,.(e) N E(R) = {e}. O

Corollary 2.6. Let R be a unit-reqular ring. If E(R) is commuting, then for
al z € X, op(x) N E(R) = {e} (resp. op(x) N E(R) ={f}) for some e € E(R)
(resp. f € E(R)).

Proof. Tt follows from Lemma 2.3 and Lemma 2.5. (]

Note that if R is a unit-regular ring such that F(R) is commuting, then the
number of orbits under the left (resp. right) regular action on X by G is equal
to the cardinality of F(R) by Lemma 2.3 and Corollary 2.6.

Theorem 2.7. If E(R) is commuting, then o¢(e) = o,.(e) for all e € E(R).

Proof. Let e € E(R) be arbitrary. Then oy(e) C o,(e1) for some e; € E(R).
Indeed, if y € o/(e) is arbitrary, then y = ge for some g € G. Thus e = g~y =
(g ') (g~ ty) = €2, and then y = yg~'y. Let e; = yg~!. Thus e; € E(R)
and y = e1g € or(e1). Hence oy(e) C o.(e1). Similarly, we can have that
or(e1) C og(ez) for some e; € FE(R). Thus e € og(e) C or(e1) C og(es).
Since E(R) is commuting, og(e2) N E(R) = {e2} and so e = ey. Therefore,
o¢(e) C or(e1) C og(e), which implies that oy(e) = o,(e1), and thus e; = e by
Lemma 2.5. Consequently, os(e) = o,(e) for all e € E(R). O



436 JUNCHEOL HAN

Corollary 2.8. Let R be a unit-reqular ring. If E(R) is commuting, then
o¢(x) = op(x) for allz € X.

Proof. Let x € X be arbitrary. Then os(x) = og(e) = o,(e) for some e € E(R)
by from Lemma 2.3 and Theorem 2.7. Since x € o,(e), or(x) = o,(e). Hence
we have og(z) = o,(z) for all z € X.

Lemma 2.9. Let R be a unit-reqular ring. If og(x) = o.(x) for allx € X, then
R is abelian regular.

Proof. By [1, Theorem 3.2], it is enough to show that R has no nonzero nilpo-
tent elements. Assume that there exists a nonzero nilpotent element x € R
such that 2" = 0 # 2"~ ! for some positive integer n. By Lemma 2.3, z = ge
for some idempotent e € X and some g € G. Since oy(z) = o.(z), 0 = 2™ = he"
for some h € G. Thus €™ = e = 0, which is a contradiction. (Il

Corollary 2.10. Let R be a unit-reqular ring. Then E(R) is commuting if
and only if R is abelian regular.

Proof. If E(R) is commuting, then R is abelian regular by Corollary 2.8 and
Lemma 2.9. The converse is clear. (|

Remark 2. If R is a unit-regular ring in which X = E(R), then R is abelian
regular.

Theorem 2.11. Let R be a unit-reqular ring. Then the following are equiva-
lent:

(1) X = E(R);

(2) the left (resp. right) reqular group action on X by G is trivial;

(3) R is a Boolean ring in which G = {1}.

Proof. (2) = (1). It follows from Lemma 2.3 and Corollary 2.4.
(1) = (3). Suppose that X = E(R). Then os(e) = o,(e) = {e} for all e € E(R)
by (1) < (2). Assume that G # {1}. Then there exist g, h € G such that g # h.
Since ge = e = he for any e € X = E(R), (9 —h)e =0. If ¢g— h € G, then
e =0, a contradiction. Thus g —h € X = E(R). Since o¢(g—h) = 0,.(9—h) =
{g — h}, we have g — h = g(g — h) = (9 — h)g, and so gh = hg. Also we have
g—h=g(lg—h)=(—h)(g—h), and so g?> = h%. Since g —h € X = E(R),
g—h={(9—h)*=g>—2gh+h®=2¢° —2gh = 2(g(g — h)) = 2(g — h), and
then g — h = 0, which is a contradiction. Therefore G = {1}. Since X = E(R)
and G = {1}, R is a Boolean ring.
(3) = (2). Clear.

]

Example 1. Let R = Hfil Zo where Zs is a galois field of order 2. Then R is
a unit-regular ring such that X = E(R), and is equivalently a Boolean ring in
which G = {1} by Theorem 2.11.
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Theorem 2.12. Let R be an abelian regular ring. If E(R) is finite, then
R ~ D1 X Dy X -+ x D, where all D; are division rings for some positive
integer n. In fact, |E(R)| = 2".

Proof. Since E(R) is finite, there exists a finite number of orbits under the left
regular action on X by G by Lemma 2.3. Observe that every left ideal of R is
G-invariant and is a union of orbits under the left regular action. Since there
exists a finite number of orbits under the left regular action, every left ideal of
R is a union of finite number of orbits under the left regular action. Hence R is
a left artinian ring. Since E(R) is central, by the Wedderburn-Artin Theorem
we have R ~ Dy X Dy x -+ X D,, where all D; are division rings for some
positive integer n and |E(R)| = 2". O

Corollary 2.13. Let R be an abelian regular ring. If E(R) is finite, then.
Then the following are equivalent:

(1) G is finite;

(2) X is finite;

(3) R is finite.

Proof. (1) = (2). Let |E(R)| = n. Then X is the union of n orbits o(z1), ..., 0(zy)
for some x1,...,x, € X by Corollary 2.6. Since G is finite, X is clearly finite.
(2) = (3). It follows from Theorem 2.1.

(3) = (1). It is clear. O

Theorem 2.14. Let R be a ring such that G is a cyclic group. If e € X s
an idempotent such that 2e # 2(= 14 1), then the orbit os(e) (resp. o.(e)) is
finite.

Proof. If o4(e) = {e} or G = {1} for an idempotent e € X, then oy(e) = {e},
and so og(e) is finite. Suppose that og(e) # {e} and G # {1}. Then |og(e)] > 1
and Stab(e) = {g € G|ge = e} is a proper subgroup of G. Let H = Stab(e)
and let a be a generator of G. Since e € X is an idempotent and 2e # 2,
2¢ —1(#1) € G. Thus (2e — 1)e = e implies that 2e — 1 € H and so H # {1}.
Since H is a proper subgroup of G, H is generated by a® for some nonnegative
integer s (s > 2). Since a® € H, a’e = e. For all g € G, g = o™ for some
m € Z. By the division algorithm for Z, m = r + ¢s form some g,r € Z, where
s—1>7r >0. Thus for all g € G, ge = a™e = a" %% = g"e. Therefore
og(e) = {a"e : 0,1,...,8 — 1} is finite. Similarly, we can show that o.(e) is
finite for an idempotent e € X such that 2e # 2. O

Corollary 2.15. Let R be a ring such that G is a cyclic group. If e € X is
an idempotent such that 2e = (1 + 1)e # 0, then oy(1 —e) (resp. o.(1 —¢)) is
finite.

Proof. Since 2e # 0, 2(1 — e) # 2. Hence it follows from Theorem 2.14. O

Corollary 2.16. Let R be a ring such that G is a cyclic group. If there exists
an idempotent e € X such that 2e = (1 + 1)e # 0,2, then G is a finite group.
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Proof. Since for all g € G, g = ge+g(1 —e) € og(e) +0¢(1 —e). Since 2e # 0, 2,
both o,(e) and og(1 — e) are finite by Theorem 2.14 and Corollary 2.15. Hence
G is a finite group. O

Corollary 2.17. Let R be a unit-reqular ring such that X # 0. If G is a cyclic
group and 2 =1+ 1 € G, then G is a finite group.

Proof. Tt follows from Lemma 2.3 and Corollary 2.16. ]

Remark 3. Let R be a unit-regular ring such that X # (. If G is a cyclic
group and 2 = 1+ 1 € G, then R is a commutative ring by [3, Theorem
3.2] and G is a finite group by the above Corollary 2.17. Hence we have that
every orbit os(z) = o,(z) is finite for all x € X. By Lemma 2.3, we have
o¢(x) = og(e) for some e € E(R). Since G is abelian, stab(x) = stab(e).
Since 2 € G, 2e — 1 € stab(e) and so stab(e) # {e}. Since oy(z) is finite,
loe(x)| = |oe(e)| = |G|/|stab(e)]. In particular, if G is a cyclic group of prime
order, then o/(x) = o.(x) = {z}, i.e., the left (right) regular action on X by G
is trivial (which is equivalent to X = E(R) by Theorem 2.11).

3. Conjugate action in unit-regular rings

Theorem 3.1. Let R be a ring such that G is a cyclic group. If e € X is an
idempotent such that 2e # 2(= 1+ 1), then the orbit o.(e) (resp. o.(1 —e)) is
finite.

Proof. The proof is similar to that of Theorem 2.14. If o.(e) = {e} or G = {1}
for an idempotent e € X, then o.(e) = {e}, and so o.(e) is finite. Suppose that
oc(e) # {e} and G # {1}. Then |o.(e)| > 1 and stab(e) = {g € G|geg™* = e} is
a proper subgroup of G. Let H = stab(e) and let a be a generator of G. Since
e € X is an idempotent and 2e # 2, 2e—1(# 1) € G. Thus (2e—1)e(2e—1)"! =
(2e — 1)e(2e — 1) = e implies that 2e — 1 € H and so H # {1}. Since H is
a proper subgroup of G, H is generated by a° for some nonnegative integer s
(s > 2). Since a®* € H, ale = e. For all g € G, g = a™ for some m € Z. By the
division algorithm for Z, m = r + ¢s form some g,r € Z, where s — 1 > r > 0.
Thus for all g € G, geg~ " = a™ea ™ = a"t%%ea~("19%) = q"eq~". Therefore
oc(e) ={a"ea™":0,1,...,s— 1} is finite. O

Corollary 3.2. Let R be a ring such that G is a cyclic group. If e € X is an
idempotent such that 2e # 0, then the orbit o.(e) (resp. o.(1 —e€)) is finite.

Proof. Since 2e # 0, 2(1 — e) # 2. Hence it follows from Theorem 3.1. O

Lemma 3.3. If E(R) is commuting, then o.(e) C og(e)(= o,(e)) for all e €
E(R).

Proof. Since E(R) is commuting, og(e) = o,(e) for all e € E(R) by Theorem
2.7. Let geg™! € o.(e) (Vg € G) be arbitrary. Since os(e) = o,(e), eg~! = he
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for some h € G, and so geg—! = (gh)e € o(e). Thus o.(e) C og(e)(= o,(e)) for
all e € E(R). O

Lemma 3.4. If E(R) is commuting, then o.(e) = {e} for all e € E(R), i.e.,
ge=eg forallg € G.

Proof. Since E(R) is commuting, os(e) N E(R) = {e} by Lemma 2.5 and also
oc(e) C og(e) by Lemma 3.3 for all e € E(R). Since o.(e) C E(R), o.(e) C
o¢(e) N E(R) = {e}, and so o.(e) = {e}. O

Theorem 3.5. Let R be a unit-reqular ring in which E(R) is commuting. If
G is an abelian group, then R is a commutative ring.

Proof. Since E(R) is commuting, ge = eg for all e € E(R) and all g € G by
Lemma 3.4. Let z € X and g € G be arbitrary. Then x = he; for some
e1 € E(R) and some h € G by Lemma 2.3. Since G is abelian, we have
gz = g(he1) = (gh)er = ei(gh) = e1(hg) = (e1h)g = (he1)g = zg. Let y € X
be arbitrary. Then y = key for some es € E(R) and some k € G by Lemma
2.3. Since E(R) is commuting, zy = (hey)(kea) = (hk)(e1e2) = (kh)(eze1) =
(kes)(he1) = yx. Consequently, R is commutative. O

Corollary 3.6. Let R be an abelian regular ring. If G is an abelian group,
then R is a commutative ring.

Proof. Tt follows from Corollary 2.10 and Theorem 3.5. (]

Theorem 3.7. Let R be an abelian reqular ring such that G is a torsion group.
Then the following are equivalent:

(1) The conjugate action on X by G is trivial;

(2) G is abelian;

(3) R is commutative.

Proof. (1)=>(2). Let g, h € G be arbitrary. Since the order of g is finite, 1 — g €
X. Since the conjugate action on X by G is trivial, the orbit o(1—g) = {1—g},
i.e., h(1 —g)h~' =1 — g and so gh = hg. Hence G is abelian.

(2)=(3). It follows from Corollary 3.6.

(3)=(1). It is clear. O

Note that (2)=-(1) in Theorem 3.7 may not be true in a ring which is not
an abelian regular ring by the following example:

a

Example 2. Let R = 0 ¢

ta,b,ce Zg}. Then R is a noncommutative

. 10 11 . . . 10
ring but G = {(0 1) , (0 1)} is an abelian group. The orbit of (0 0) €

X under the conjugate action on X by G is equal to {(é 8) ) <(1) é)} #*

{ ((1) 8) }, and so the conjugate action on X by G is not trivial.
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