DOI QR코드

DOI QR Code

FINITE p-GROUPS WHOSE NON-ABELIAN SUBGROUPS HAVE THE SAME CENTER

  • Wang, Lifang (Department of Mathematics Shanxi Normal University)
  • Received : 2016.03.20
  • Published : 2017.07.01

Abstract

For an odd prime p, finite p-groups whose non-abelian subgroups have the same center are classified in this paper.

Keywords

References

  1. Y. Berkovich, Groups of Prime Power Order. Vol. 1, Walter de Gruyter, Berlin, 2008.
  2. A. A. Finogenov, On finite p-groups with a cyclic commutator group and cyclic center, Math. Notes 63 (1998), no. 5-6, 802-812. https://doi.org/10.1007/BF02312775
  3. B. Huppert, Endliche Gruppen I, Berlin, Springer-Verlag, 1967.
  4. Z. Janko, Finite nonabelian p-groups having exactly one maximal subgroup with a noncyclic center, Arch. Math. (Basel) 96 (2011), no. 2, 101-103. https://doi.org/10.1007/s00013-010-0212-3
  5. M. F. Newman and M. Y. Xu, Metacyclic groups of prime-power order, preprint, 1987.
  6. L. Redei, Das "schiefe Produkt" in der Gruppentheorie mit Anwendung auf die endlichen nichtkommutativen Gruppen mit lauter kommutativen echten Untergruppen und die Ordnungszahlen, zu denen nur kommutative Gruppen gehoren, Comment. Math. Helvet. 20 (1947), 225-264. https://doi.org/10.1007/BF02568131
  7. H. F. Tuan, A theorem about p-groups with abelian subgroup of index p, Acad Sinica Science Record 3 (1950), 17-23.
  8. L. F. Wang and Q. H. Zhang, Finite 2-groups whose non-abelian subgroups have the same Center, J. Group Theory 17 (2014), no. 4, 689-703. https://doi.org/10.1515/jgt-2013-0059
  9. M. Y. Xu, A theorem on metabelian p-groups and some consequences, Chin. Ann. Math. 5B (1984), 1-6.
  10. M. Y. Xu, L. J. An, and Q. H. Zhang, Finite p-groups all of whose non-abelian proper subgroups are generated by two elements, J. Algebra 319 (2008), no. 9, 3603-3620. https://doi.org/10.1016/j.jalgebra.2008.01.045
  11. M. Y. Xu and Q. H. Zhang, A classification of metacyclic 2-groups, Algebra Colloq. 13 (2006), no. 1, 25-34. https://doi.org/10.1142/S1005386706000058
  12. Q. H. Zhang, X. J. Sun, L. J. An, and M. Y. Xu, Finite p-groups all of whose subgroups of index $p^2$ are abelian, Algebra Colloq. 15 (2008), no. 1, 167-180. https://doi.org/10.1142/S1005386708000163
  13. Q. H. Zhang, L. B. Zhao, M. M. Li, and Y. Q. Shen, Finite p-groups all of whose subgroups of index $p^3$ are abelian, Commun. Math. Stat. 3 (2015), no. 1, 69-162. https://doi.org/10.1007/s40304-015-0053-2