References
- N. Alon, G. Ding, B. Oporowski, and D. Vertigan, Partitioning into graphs with only small components, J. Combin. Theory Ser. B 87 (2003), no. 2, 231-243. https://doi.org/10.1016/S0095-8956(02)00006-0
- N. Alon and J. H. Spencer, The Probabilistic Method, Wiley, New York, 1992.
- BadukTV, http://www.onbadook.com/
- E. R. Berlekamp and D. Wolfe, Mathematical Go: Chilling Gets the Last Point, A. K. Peters, Wellesley, Ma., 1994.
- B. Bouzy and T. Cazenave, Computer Go: an AI oriented survey, Artificial Intelligence 132 (2001), no. 1, 39-103. https://doi.org/10.1016/S0004-3702(01)00127-8
- J. H. Conway, On Numbers and Games, 2nd edn., A. K. Peters, Natick, Ma., 2001.
- A. Denise, M. Vasconcellos, and D. J. A. Welsh, The random planar graph, Congr. Numer. 113 (1996), 61-79.
- K. Edwards and G. E. Farr, On monochromatic component size for improper colourings, Discrete Appl. Math. 148 (2005), no. 1, 89-105. https://doi.org/10.1016/j.dam.2004.10.005
- J. Fairbairn, Go in ancient China, London, 1995, http://www.pandanet.co.jp/English/essay/goancientchina.html.
- G. E. Farr, The Go polynomials of a graph, Theoret. Comput. Sci. 306 (2003), no. 1-3, 1-18. https://doi.org/10.1016/S0304-3975(02)00831-9
- G. E. Farr and J. Schmidt, On the number of Go positions on lattice graphs, Inform. Process. Lett. 105 (2008), no. 4, 124-130. https://doi.org/10.1016/j.ipl.2007.08.018
- E. Gibney, Google masters Go, Nature 529 (28 January 2016) 445-446, http://www.nature.com/news/google-ai-algorithm-masters-ancient-game-of-go-1.19234. https://doi.org/10.1038/529445a
- Go Game Guru, DeepMind AlphaGo vs Lee Sedol, https://gogameguru.com/tag/deepmind-alphago-lee-sedol/
- International Go Federation, About the IGF, 14 June 2010, http://intergofed.org/about-the-igf.html.
- K. Iwamoto, Go for Beginners, Ishi Press, 1972, and Penguin Books, 1976.
- S. Y. Jang, Y. R. Kim, D.-W. Lee, and I. Yie (eds.), Proceedings of the International Congress of Mathematicians, Seoul 2014, Vol. I, Kyung Mooh Sa Co. Ltd., Seoul, Korea, 2014.
- D. A. Klarner and R. L. Rivest, A procedure for improving the upper bound for the number of n-ominoes, Canad. J. Math. 25 (1973), 585-602. https://doi.org/10.4153/CJM-1973-060-4
- D. Lichtenstein and M. Sipser, GO is polynomial-space hard, J. Assoc. Comput. Mach. 27 (1980), no. 2, 393-401. https://doi.org/10.1145/322186.322201
- M. Noy, Random planar graphs and the number of planar graphs, in: G. R. Grimmett and C. J. H. McDiarmid (eds.), Combinatorics, Complexity, and Chance: A Tribute to Dominic Welsh, Oxford, 2007, pp. 213-233.
- A. Rimmel, F. Teytaud, C.-S. Lee, S.-J. Yen, M.-H. Wang, and S.-R. Tsai, Current frontiers in computer Go, IEEE Trans. Comput. Intell. AI Games 2 (2010), 229-238. https://doi.org/10.1109/TCIAIG.2010.2098876
- Seoul ICM 2014, http://www.icm2014.org/en/events/popularization/activities3.
- J. Tromp, Number of legal Go positions, https://tromp.github.io/go/legal.html, Jan. 2016.
- J. Tromp and G. Farneback, Combinatorics of Go, in: H. J. van den Herik, P. Ciancarini, and H. H. L. M. Donkers (eds.), Computers and Games: 5th International Conference, CG 2006 (Turin, 29-31 May 2006), Lecture Notes in Computer Science 4630, Springer, Berlin, 2007, pp. 84-99.
- N. C. Wormald, Models of random regular graphs, Surveys in combinatorics, 1999 (Canterbury), 239-98, London Math. Soc. Lecture Note Ser., 267, Cambridge Univ. Press, Cambridge, 1999.