DOI QR코드

DOI QR Code

COLORED PERMUTATIONS WITH NO MONOCHROMATIC CYCLES

  • Kim, Dongsu (Department of Mathematical Sciences KAIST) ;
  • Kim, Jang Soo (Department of Mathematics Sungkyunkwan University) ;
  • Seo, Seunghyun (Department of Mathematics Education Kangwon National University)
  • Received : 2016.05.30
  • Published : 2017.07.01

Abstract

An ($n_1,\;n_2,\;{\ldots},\;n_k$)-colored permutation is a permutation of $n_1+n_2+{\cdots}+n_k$ in which $1,\;2,\;{\ldots},\;n_1$ have color 1, and $n_1+1,\;n_1+2,\;{\ldots},\;n_1+n_2$ have color 2, and so on. We give a bijective proof of Steinhardt's result: the number of colored permutations with no monochromatic cycles is equal to the number of permutations with no fixed points after reordering the first $n_1$ elements, the next $n_2$ element, and so on, in ascending order. We then find the generating function for colored permutations with no monochromatic cycles. As an application we give a new proof of the well known generating function for colored permutations with no fixed colors, also known as multi-derangements.

Keywords

References

  1. R. Askey and M. E. H. Ismail, Permutation problems and special functions, Canad. J. Math. 28 (1976), no. 4, 853-874. https://doi.org/10.4153/CJM-1976-082-8
  2. R. Chapman and L. K. Williams, A conjecture of Stanley on alternating permutations, Electron. J. Combin. 14 (2007), no. 1, Note 16, 7 pp.
  3. N. Eriksen, R. Freij, and J. Wastlund, Enumeration of derangements with descents in prescribed positions, Electron. J. Combin. 16 (2009), #R32.
  4. D. Foata and D. Zeilberger, Laguerre polynomials, weighted derangements, and positivity, SIAM J. Discrete Math. 1 (1988), no. 4, 425-433. https://doi.org/10.1137/0401043
  5. I. M. Gessel and C. Reutenauer, Counting permutations with given cycle structure and descent set, J. Combin. Theory Ser. A 64 (1993), no. 2, 189-215. https://doi.org/10.1016/0097-3165(93)90095-P
  6. G.-N. Han and G. Xin, Permutations with extremal number of fixed points, J. Combin. Theory Ser. A 116 (2009), no. 2, 449-459. https://doi.org/10.1016/j.jcta.2008.08.001
  7. D. Kim and J. Zeng, A new decomposition of derangements, J. Combin. Theory Ser. A 96 (2001), no. 1, 192-198. https://doi.org/10.1006/jcta.2001.3190
  8. R. P. Stanley, Enumerative Combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1999.
  9. R. P. Stanley, Alternating permutations and symmetric functions, J. Combin. Theory Ser. A 114 (2007), no. 3, 436-460. https://doi.org/10.1016/j.jcta.2006.06.008
  10. R. P. Stanley, A survey of alternating permutations, In Combinatorics and graphs, volume 531 of Contemp. Math., pages 165-196. Amer. Math. Soc., Providence, RI, 2010.
  11. R. P. Stanley, Enumerative Combinatorics. Vol. 1, Second ed., Cambridge University Press, New York/Cambridge, 2011.
  12. J. Steinhardt, Permutations with ascending and descending blocks, Electron. J. Combin. 17 (2010), #R14.
  13. J. Zeng, Linearisation de produits de polynomes de Meixner, Krawtchouk, et Charlier., SIAM J. Math. Anal. 21 (1990), no. 5, 1349-1368. https://doi.org/10.1137/0521075
  14. J. Zeng, Weighted derangements and the linearization coefficients of orthogonal Sheffer polynomials, Proc. London Math. Soc. (3) 65 (1992), no. 1, 1-22.