• Title/Summary/Keyword: aAntiviral

Search Result 669, Processing Time 0.027 seconds

Antiviral activities of ginseng and its potential and putative benefits against monkeypox virus: A mini review

  • Rajib Chandra Das;Zubair Ahmed Ratan;Md Mustafizur Rahman;Nusrat Jahan Runa;Susmita Mondal;Konstantin Konstantinov;Hassan Hosseinzadeh;Jae Youl Cho
    • Journal of Ginseng Research
    • /
    • v.47 no.6
    • /
    • pp.687-693
    • /
    • 2023
  • Due to the Covid-19 pandemic more than 6 million people have died, and it has bought unprecedented challenges to our lives. The recent outbreak of monkeypox virus (MPXV) has brought out new tensions among the scientific community. Currently, there is no specific treatment protocol for MPXV. Several antivirals, vaccinia immune globulin (VIG) and smallpox vaccines have been used to treat MPXV. Ginseng, one of the more famous among traditional medicines, has been used for infectious disease for thousands of years. It has shown promising antiviral effects. Ginseng could be used as a potential adaptogenic agent to help prevent infection by MPXV along with other drugs and vaccines. In this mini review, we explore the possible use of ginseng in MPXV prevention based on its antiviral activity.

Surface-Displayed Porcine IFN-λ3 in Lactobacillus plantarum Inhibits Porcine Enteric Coronavirus Infection of Porcine Intestinal Epithelial Cells

  • Liu, Yong-Shi;Liu, Qiong;Jiang, Yan-Long;Yang, Wen-Tao;Huang, Hai-Bin;Shi, Chun-Wei;Yang, Gui-Lian;Wang, Chun-Feng
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.515-525
    • /
    • 2020
  • Interferon (IFN)-λ plays an essential role in mucosal cells which exhibit strong antiviral activity. Lactobacillus plantarum (L. plantarum) has substantial application potential in the food and medical industries because of its probiotic properties. Alphacoronaviruses, especially porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV), cause high morbidity and mortality in piglets resulting in economic loss. Co-infection by these two viruses is becoming increasingly frequent. Therefore, it is particularly important to develop a new drug to prevent diarrhea infected with mixed viruses in piglets. In this study, we first constructed an anchored expression vector with CWA (C-terminal cell wall anchor) on L. plantarum. Second, we constructed two recombinant L. plantarum strains that anchored IFN-λ3 via pgsA (N-terminal transmembrane anchor) and CWA. Third, we demonstrated that both recombinant strains possess strong antiviral effects against coronavirus infection in the intestinal porcine epithelial cell line J2 (IPEC-J2). However, recombinant L. plantarum with the CWA anchor exhibited a more powerful antiviral effect than recombinant L. plantarum with pgsA. Consistent with this finding, Lb.plantarum-pSIP-409-IFN-λ3-CWA enhanced the expression levels of IFN-stimulated genes (ISGs) (ISG15, OASL, and Mx1) in IPEC-J2 cells more than did recombinant Lb.plantarum-pSIP-409-pgsA'-IFN-λ3. Our study verifies that recombinant L. plantarum inhibits PEDV and TGEV infection in IPEC-J2 cells, which may offer great potential for use as a novel oral antiviral agent in therapeutic applications for combating porcine epidemic diarrhea and transmissible gastroenteritis. This study is the first to show that recombinant L. plantarum suppresses PEDV and TGEV infection of IPEC-J2 cells.

An Antiviral Mechanism Investigated with Ribavirin as an RNA Virus Mutagen for Foot-and-mouth Disease Virus

  • Gu, Chao-Jiang;Zheng, Cong-Yi;Zhang, Qian;Shi, Li-Li;Li, Yong;Qu, San-Fu
    • BMB Reports
    • /
    • v.39 no.1
    • /
    • pp.9-15
    • /
    • 2006
  • To prove whether error catastrophe /lethal mutagenesis is the primary antiviral mechanism of action of ribavirin against foot-and-mouth disease virus (FMDV). Ribavirin passage experiments were performed and supernatants of $Rp_1$ to $Rp_5$ were harvested. Morphological alterations as well as the levels of viral RNAs, proteins, and infectious particles in the BHK-21 cells infected using the supernatants of $Rp_1$ to $Rp_5$ and control were measured by microscope, real-time RT-PCR, western-blotting and plaque assays, respectively. The mutation frequency was measured by sequencing the complete P1- and 3D-encoding region of FMDV after a single round of virus infection from ribavirin-treated or untreated FMDV-infected cells. Ribavirin treatment for FMDV caused dramatically inhibition of multiplication in cell cultures. The levels of viral RNAs, proteins, and infectious particles in the BHK-21 cells infected were more greatly reduced along with the passage from $Rp_1$ to $Rp_5$, moreover, nucleocapsid protein could not be detected and no recovery of infectious virus in the supernatant or detection of intracellular viral RNA was observed at the $Rp_5$-infected cells. A high mutation rate, giving rise to an 8-and 11-fold increase in mutagenesis and resulting in some amino acid substitutions, was found in viral RNA synthesized at a single round of virus infection in the presence of ribavirin of $1000\;{\mu}M$ and caused a 99.7% loss in viral infectivity in contrast with parallel untreated control virus. These results suggest that the antiviral molecular mechanism of ribavirin is based on the lethal mutagenesis/error catastrophe, that is, the ribavirin is not merely an antiviral reagent but also an effective mutagen.

Development of a Platform for Natural Killer Cell Therapy with Antiviral Efficacy (항바이러스 효능을 가진 자연살해세포 치료제 플랫폼 개발)

  • Dongsoo Kim;Hyeongseok Yun;Jinhui Lee;Dayoung Yeon;Chi Ho Yu;Se Hum Gu;Young-Jo Song;Jung-Eun Kim;Seung-Ho Lee;Yong Han Lee;Gyeung Haeng Hur;Junghwa Kang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.107-115
    • /
    • 2024
  • Various vaccines were rapidly developed during the COVID-19 pandemic to prevent and treat infections but global infections continue, and concerns about new mutations and infectious diseases persist. Thus, active research focuses on developing, producing, and supplying vaccines and treatments for various infectious diseases and potential pandemics. Natural killer(NK) cells, as innate immune cells, can recognize and eliminate abnormal cells like virus-infected and cancer cells. Hence, their development as anticancer and antiviral treatments is rapidly advancing. In this study, optimal short-term culture conditions were identified for allogeneic NK cells by simplifying the culture process through the isolation of NK cells(referred to as NKi cells) and eliminating CD3+ cells(referred to as CD3- cells). NK cells demonstrated reduced viral titer in injection of NK cells into SARS-CoV-2 infected ACE-tg mice increased survival. The study's findings could form the basis for an antiviral treatment platform that swiftly responds to new viral disease pandemics.

Antiviral Activity of Some Flavonoids on Herpes Simplex Viruses (수종 Flavonoid의 항허피스바이러스효과)

  • Lee, Ji-Hyun;Kim, Young-So;Lee, Chong-Kil;Lee, Hyuk-Koo;Han, Seong-Sun
    • Korean Journal of Pharmacognosy
    • /
    • v.30 no.1
    • /
    • pp.34-39
    • /
    • 1999
  • To search for less toxic antiherpetic agents, the inhibitory effects of twelve kinds of flavonoids including chrysin, quercetin, quercitrin, rutin, fisetin, gossypin, kaempferol, morin, naringenin, naringin, hesperetin and hesperidin on the plaque formation of herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) in Vero cells were examined by plaque reduction assay in vitro. Some flavonoids tested in this study showed potent antiherpetic activity, reducing intracellular replication of herpes simplex viruses when Vero cell monolayers were infected and subsequently cultured in medium containing flavonoids. Naringenin showed the most potent antiviral activity against HSV-1 with selectivity index (SI) of 19.1 and hesperetin showed the most potent antiviral activity against HSV-2 with SI of 9.8. These results suggest that some flavonoids may be a potential therapeutic agent for the treatment and prevention of herpes simplex virus infections.

  • PDF

Purification and Characterization of an Antiviral Ribosome-inactivating Protein from Chenopodium album L.

  • Cho, Kang-Jin;Lee, Si-Myung;Kim, Yeong-Tae;Hwang, Young-Soo
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.3
    • /
    • pp.125-130
    • /
    • 2000
  • An antiviral protein (CAP30) with ribosome-inactivating activity was purified from the leaves of Chenopodium album L. through ammonium sulfate precipitation and column chromatography using S-Sepharose, Blue-Sepharose, FPLC Suprose12 HR, and FPLC Mono-S. The molecular wight of CAP30 was estimated to be 30kD. CAP30 was thermostable, maintaing its activity even after incubation at $70^{\circ}C$ for 30 min, and was stable in the pH range of 6 to 9. In a cell-free in vitro translation system using rabbit reticulocyte lysate, protein synthesis was inhibited by the addition of CAP30 with an $IC_{50}$ of 2.26pM. The comparison of N-terminal amino acid sequences of this protein with known ribosome-inactivating proteins (RIPs) revealed that it had some sequence homology with PAP-S and PAP-R from pokeweed (Phytolacca americana)and dodecandrin from P. dodecandra, but had no sequence homology with RIPs from other plants belonging to different orders. The mosaic symptoms on tobacco leaves caused by cucumber mosaic virus infection was completely inhibited by 100 ng/ml of the pure CAP30 protein.

  • PDF

Repurposing Screens of FDA-Approved Drugs Identify 29 Inhibitors of SARS-CoV-2

  • Ku, Keun Bon;Shin, Hye Jin;Kim, Hae Soo;Kim, Bum-Tae;Kim, Seong-Jun;Kim, Chonsaeng
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.12
    • /
    • pp.1843-1853
    • /
    • 2020
  • COVID-19, caused by the novel coronavirus SARS-CoV-2, has spread globally and caused serious social and economic problems. The WHO has declared this outbreak a pandemic. Currently, there are no approved vaccines or antiviral drugs that prevent SARS-CoV-2 infection. Drugs already approved for clinical use would be ideal candidates for rapid development as COVID-19 treatments. In this work, we screened 1,473 FDA-approved drugs to identify inhibitors of SARS-CoV-2 infection using cell-based assays. The antiviral activity of each compound was measured based on the immunofluorescent staining of infected cells using anti-dsRNA antibody. Twenty-nine drugs among those tested showed antiviral activity against SARS-CoV-2. We report this new list of inhibitors to quickly provide basic information for consideration in developing potential therapies.

Exploration of Antiviral and Cell Regeneration Effects of the Korean Hand Acupuncture(Koryo Sooji Chim) Therapy (고려 수지침 요법의 항바이라스 및 세포재생 효과에 대한 탐색)

  • Hyung H. Lee
    • Journal of Naturopathy
    • /
    • v.12 no.1
    • /
    • pp.31-34
    • /
    • 2023
  • Background: There is no research on antiviral treatment using the Koryo Hand Acupuncture Therapy(KHAT). Purpose: The purpose was to observe the effect of KHAT therapy stimulation on patients infected with Herpesvirus-2. Results: As a result of daily observation while stimulating the acupuncture points of 3 subjects, patients in their 20s were cured on the 3rd day, those in their 50s on the 4th day, and those in their 70s on the 5th day. Conclusion: Cells destroyed by viral infection were regenerated by stimulation of hand acupuncture therapy, and viral proliferation in cells also disappeared. This means that antiviral treatment using KHAT is effective.

Improving siRNA design targeting nucleoprotein gene as antiviral against the Indonesian H5N1 virus

  • Hartawan, Risza;Pujianto, Dwi Ari;Dharmayanti, Ni Luh Putu Indi;Soebandrio, Amin
    • Journal of Veterinary Science
    • /
    • v.23 no.2
    • /
    • pp.24.1-24.10
    • /
    • 2022
  • Background: Small interfering RNA technology has been considered a prospective alternative antiviral treatment using gene silencing against influenza viruses with high mutations rates. On the other hand, there are no reports on its effectiveness against the highly pathogenic avian influenza H5N1 virus isolated from Indonesia. Objectives: The main objective of this study was to improve the siRNA design based on the nucleoprotein gene (siRNA-NP) for the Indonesian H5N1 virus. Methods: The effectiveness of these siRNA-NPs (NP672, NP1433, and NP1469) was analyzed in vitro in Marbin-Darby canine kidney cells. Results: The siRNA-NP672 caused the largest decrease in viral production and gene expression at 24, 48, and 72 h post-infection compared to the other siRNA-NPs. Moreover, three serial passages of the H5N1 virus in the presence of siRNA-NP672 did not induce any mutations within the nucleoprotein gene. Conclusions: These findings suggest that siRNA-NP672 can provide better protection against the Indonesian strain of the H5N1 virus.

Antibacterial and Antiviral Activities of Microwave-assisted Thuja orientalis Extracts (마이크로웨이브를 이용한 측백나무 추출물의 항균 및 항바이러스 특성)

  • Sangwon Ko;Jae-Young Lee;Seong-Hyeon Kim;Young-Chul Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.192-198
    • /
    • 2023
  • In this study, the components of microwave-assisted extracts obtained from Thuja orientalis leaves were analyzed, and the cytotoxicity, antibacterial and antiviral activities were evaluated. The predominant components from microwave-assisted extraction were catechin, leucopelargonidin, arecatannin, quinolone, and kaempferol derivatives, which are classified in the flavonoid and tannin groups. We observed that the 0.11 mg/mL of extract concentration did not show cytotoxicity in HaCaT cells. The antibacterial activities were tested according to the guidelines of methods for determining the bactericidal activity of antimicrobial agents. The extracts showed 99.9% antibacterial efficiency against gram-positive S. aureus, while the antibacterial effect on gram-negative E. coli was insignificant. When the extract concentration and contact time with bacteria were increased, 99.9% antibacterial efficiency was observed for E. coli as well as S. aureus. Following the standard to assess the activity of microbicides against viruses in suspension (ASTM-E1052-20), the antiviral efficiency was more than 99.99% for influenza A (H1N1) and SARS-CoV-2. These results suggest its potential use in antiviral disinfectants, surface coatings, personal protective equipment, and textiles.