DOI QR코드

DOI QR Code

Improving siRNA design targeting nucleoprotein gene as antiviral against the Indonesian H5N1 virus

  • Received : 2021.06.16
  • Accepted : 2021.12.07
  • Published : 2022.03.31

Abstract

Background: Small interfering RNA technology has been considered a prospective alternative antiviral treatment using gene silencing against influenza viruses with high mutations rates. On the other hand, there are no reports on its effectiveness against the highly pathogenic avian influenza H5N1 virus isolated from Indonesia. Objectives: The main objective of this study was to improve the siRNA design based on the nucleoprotein gene (siRNA-NP) for the Indonesian H5N1 virus. Methods: The effectiveness of these siRNA-NPs (NP672, NP1433, and NP1469) was analyzed in vitro in Marbin-Darby canine kidney cells. Results: The siRNA-NP672 caused the largest decrease in viral production and gene expression at 24, 48, and 72 h post-infection compared to the other siRNA-NPs. Moreover, three serial passages of the H5N1 virus in the presence of siRNA-NP672 did not induce any mutations within the nucleoprotein gene. Conclusions: These findings suggest that siRNA-NP672 can provide better protection against the Indonesian strain of the H5N1 virus.

Keywords

Acknowledgement

The authors acknowledge all the staff and technicians of the Virology Department for the laboratory and technical support.

References

  1. Sims LD, Brown IH. Multi-continental panzootic of H5 highly pathogenic avian influenza (1996-2015). In: Swayne DE, editor. Animal Influenza. 2nd ed. Iowa: John Wiley & Sons, Inc.; 2016, 204-247.
  2. Dharmayanti NLPI, Hewajuli DA, Ratnawati A, Hartawan R. Genetic diversity of the H5N1 viruses in live bird markets, Indonesia. J Vet Sci. 2020;21(4):e56. https://doi.org/10.4142/jvs.2020.21.e56
  3. Shaw ML, Palese P. Orthomyxoviridae. In: Knipe DM, Howley PM, editors. Fields Virology. 6th ed. Baltimore: Wolter Luwer; 2013, 1151-1185.
  4. Suarez DL. Influenza A virus, In: Swayne DE, editor. Animal Influenza. 2nd ed. Iowa: John Wiley & Sons, Inc.; 2016, 3-30.
  5. Gasparini R, Amicizia D, Lai PL, Bragazzi NL, Panatto D. Compounds with anti-influenza activity: present and future of strategies for the optimal treatment and management of influenza. Part II: future compounds against influenza virus. J Prev Med Hyg. 2014;55(4):109-129.
  6. Saladino R, Barontini M, Crucianelli M, Nencioni L, Sgarbanti R, Palamara AT. Current advances in anti-influenza therapy. Curr Med Chem. 2010;17(20):2101-2140. https://doi.org/10.2174/092986710791299957
  7. de Jong MD, Tran TT, Truong HK, Vo MH, Smith GJ, Nguyen VC, Bach VC, Phan TQ, Do QH, Guan Y, Peiris JS, Tran TH, Farrar J. Oseltamivir resistance during treatment of influenza A (H5N1) infection. N Engl J Med. 2005;353(25):2667-2672. https://doi.org/10.1056/NEJMoa054512
  8. Earhart KC, Elsayed NM, Saad MD, Gubareva LV, Nayel A, Deyde VM, Abdelsattar A, Abdelghani AS, Boynton BR, Mansour MM, Essmat HM, Klimov A, Shuck-Lee D, Monteville MR, Tjaden JA. Oseltamivir resistance mutation N294S in human influenza A(H5N1) virus in Egypt. J Infect Public Health. 2009;2(2):74-80. https://doi.org/10.1016/j.jiph.2009.04.004
  9. Okomo-Adhiambo M, Fry AM, Su S, Nguyen HT, Elal AA, Negron E, Hand J, Garten RJ, Barnes J, Xiyan X, Villanueva JM, Gubareva LV2013-14 US Influenza Antiviral Working Group. Oseltamivir-resistant influenza A(H1N1)pdm09 viruses, United States, 2013-14. Emerg Infect Dis. 2015;21(1):136-141. https://doi.org/10.3201/eid2101/141006
  10. Gavrilov K, Saltzman WM. Therapeutic siRNA: principles, challenges, and strategies. Yale J Biol Med. 2012;85(2):187-200.
  11. Pawitan JA. Molecular pathogenesis of avian influenza and prospect of theraphy using small interfering RNA. In: Haugan S, Bjornson W, editors. Avian Influenza: Etiology, Pathogenesis and Interventions. New York: Nova Science Publishing; 2010, 69-82.
  12. Behera P, Nagarajan S, Murugkar HV, Kalaiyarasu S, Prakash A, Gothalwal R, Dubey SC, Kulkarni DD, Tosh C. siRNAs targeting PB2 and NP genes potentially inhibit replication of highly pathogenic H5N1 avian influenza virus. J Biosci. 2015;40(2):233-240. https://doi.org/10.1007/s12038-015-9524-6
  13. Ge Q, McManus MT, Nguyen T, Shen CH, Sharp PA, Eisen HN, Chen J. RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc Natl Acad Sci U S A. 2003;100(5):2718-2723. https://doi.org/10.1073/pnas.0437841100
  14. Zhou H, Jin M, Yu Z, Xu X, Peng Y, Wu H, Liu J, Liu H, Cao S, Chen H. Effective small interfering RNAs targeting matrix and nucleocapsid protein gene inhibit influenza A virus replication in cells and mice. Antiviral Res. 2007;76(2):186-193. https://doi.org/10.1016/j.antiviral.2007.07.002
  15. Zhou K, He H, Wu Y, Duan M. RNA interference of avian influenza virus H5N1 by inhibiting viral mRNA with siRNA expression plasmids. J Biotechnol. 2008;135(2):140-144. https://doi.org/10.1016/j.jbiotec.2008.03.007
  16. Dharmayanti NLPI, Hartawan R, PudjiatmokoWibawa H, HardimanBalish A, Donis R, Davis CT, Samaan G. Genetic characterization of clade 2.3.2.1 avian influenza A(H5N1) viruses, Indonesia, 2012. Emerg Infect Dis. 2014;20(4):671-674. https://doi.org/10.3201/eid2004.130517
  17. Dharmayanti NLPI, Ibrahim F, Soebandrio A. Amantadine resistant of Indonesian H5N1 subtype influenza viruses during 2003-2008. Microbiol Indones. 2010;4:1-6. https://doi.org/10.5454/mi.4.1.1
  18. Dharmayanti NLPI, Thor SW, Zanders N, Hartawan R, Ratnawati A, Jang Y, Rodriguez M, Suarez DL, Samaan G, Pudjiatmoko , Davis CT. Attenuation of highly pathogenic avian influenza A(H5N1) viruses in Indonesia following the reassortment and acquisition of genes from low pathogenicity avian influenza A virus progenitors. Emerg Microbes Infect. 2018;7(1):147. https://doi.org/10.1038/s41426-018-0147-5
  19. Dharmayanti NLPI, Hartawan R, Hewajuli DA. Development of primers for reverse transcriptase polymerase chain reaction to detect avian influenza virus in Indonesia. J Vet. 2016;17:183-196.
  20. Fouchier RA, Bestebroer TM, Herfst S, Van Der Kemp L, Rimmelzwaan GF, Osterhaus AD. Detection of influenza A viruses from different species by PCR amplification of conserved sequences in the matrix gene. J Clin Microbiol. 2000;38(11):4096-4101. https://doi.org/10.1128/JCM.38.11.4096-4101.2000
  21. Lee MS, Chang PC, Shien JH, Cheng MC, Shieh HK. Identification and subtyping of avian influenza viruses by reverse transcription-PCR. J Virol Methods. 2001;97(1-2):13-22. https://doi.org/10.1016/S0166-0934(01)00301-9
  22. Stauber N, Brechtbuhl K, Bruckner L, Hofmann MA. Detection of Newcastle disease virus in poultry vaccines using the polymerase chain reaction and direct sequencing of amplified cDNA. Vaccine. 1995;13(4):360-364. https://doi.org/10.1016/0264-410X(95)98257-B
  23. Wright KE, Wilson GA, Novosad D, Dimock C, Tan D, Weber JM. Typing and subtyping of influenza viruses in clinical samples by PCR. J Clin Microbiol. 1995;33(5):1180-1184. https://doi.org/10.1128/jcm.33.5.1180-1184.1995
  24. Spackman E, Killian ML. Avian influenza virus isolation, propagation, and titration in embryonated chicken eggs. In: Spackman E, editor. Animal Influenza Virus. 2nd ed. New York: Humana Press; 2014, 125-140.
  25. Whittaker GR. Intracellular trafficking of influenza virus: clinical implications for molecular medicine. Expert Rev Mol Med. 2001;2001(5):1-13. https://doi.org/10.1017/S1462399401002447
  26. Khantasup K, Kopermsub P, Chaichoun K, Dharakul T. Targeted small interfering RNAimmunoliposomes as a promising therapeutic agent against highly pathogenic avian influenza A (H5N1) virus infection. Antimicrob Agents Chemother. 2014;58(5):2816-2824. https://doi.org/10.1128/AAC.02768-13
  27. Linke LM, Wilusz J, Pabilonia KL, Fruehauf J, Magnuson R, Olea-Popelka F, Triantis J, Landolt G, Salman M. Inhibiting avian influenza virus shedding using a novel RNAi antiviral vector technology: proof of concept in an avian cell model. AMB Express. 2016;6(1):16. https://doi.org/10.1186/s13568-016-0187-y
  28. Tompkins SM, Lo CY, Tumpey TM, Epstein SL. Protection against lethal influenza virus challenge by RNA interference in vivo. Proc Natl Acad Sci U S A. 2004;101(23):8682-8686. https://doi.org/10.1073/pnas.0402630101
  29. Huang DT, Lu CY, Shao PL, Chang LY, Wang JY, Chang YH, Lai MJ, Chi YH, Huang LM. In vivo inhibition of influenza A virus replication by RNA interference targeting the PB2 subunit via intratracheal delivery. PLoS One. 2017;12(4):e0174523. https://doi.org/10.1371/journal.pone.0174523
  30. Gillman A, Muradrasoli S, Soderstrom H, Holmberg F, Latorre-Margalef N, Tolf C, Waldenstrom J, Gunnarsson G, Olsen B, Jarhult JD. Oseltamivir-resistant influenza A (H1N1) virus strain with an H274Y mutation in neuraminidase persists without drug pressure in infected mallards. Appl Environ Microbiol. 2015;81(7):2378-2383. https://doi.org/10.1128/AEM.04034-14
  31. Govorkova EA, Baranovich T, Seiler P, Armstrong J, Burnham A, Guan Y, Peiris M, Webby RJ, Webster RG. Antiviral resistance among highly pathogenic influenza A (H5N1) viruses isolated worldwide in 2002- 2012 shows need for continued monitoring. Antiviral Res. 2013;98(2):297-304. https://doi.org/10.1016/j.antiviral.2013.02.013
  32. He G, Qiao J, Dong C, He C, Zhao L, Tian Y. Amantadine-resistance among H5N1 avian influenza viruses isolated in Northern China. Antiviral Res. 2008;77(1):72-76. https://doi.org/10.1016/j.antiviral.2007.08.007