DOI QR코드

DOI QR Code

Quercetin ameliorates glutamate toxicity-induced neuronal cell death by controlling calcium-binding protein parvalbumin

  • Kang, Ju-Bin (Department of Anatomy and Histology, College of Veterinary Medicine, Gyeongsang National University) ;
  • Park, Dong-Ju (Department of Anatomy and Histology, College of Veterinary Medicine, Gyeongsang National University) ;
  • Shah, Murad-Ali (Department of Anatomy and Histology, College of Veterinary Medicine, Gyeongsang National University) ;
  • Koh, Phil-Ok (Department of Anatomy and Histology, College of Veterinary Medicine, Gyeongsang National University)
  • Received : 2021.10.20
  • Accepted : 2021.12.23
  • Published : 2022.03.31

Abstract

Background: Glutamate is the main excitatory neurotransmitter. Excessive glutamate causes excitatory toxicity and increases intracellular calcium, leading to neuronal death. Parvalbumin is a calcium-binding protein that regulates calcium homeostasis. Quercetin is a polyphenol found in plant and has neuroprotective effects against neurodegenerative diseases. Objectives: We investigated whether quercetin regulates apoptosis by modulating parvalbumin expression in glutamate induced neuronal damage. Methods: Glutamate was treated in hippocampal-derived cell line, and quercetin or vehicle was treated 1 h before glutamate exposure. Cells were collected for experimental procedure 24 h after glutamate treatment and intracellular calcium concentration and parvalbumin expression were examined. Parvalbumin small interfering RNA (siRNA) transfection was performed to detect the relation between parvalbumin and apoptosis. Results: Glutamate reduced cell viability and increased intracellular calcium concentration, while quercetin preserved calcium concentration and neuronal damage. Moreover, glutamate reduced parvalbumin expression and quercetin alleviated this reduction. Glutamate increased caspase-3 expression, and quercetin attenuated this increase in both parvalbumin siRNA transfected and non-transfected cells. The alleviative effect of quercetin was statistically significant in non-transfected cells. Moreover, glutamate decreased bcl-2 and increased bax expressions, while quercetin alleviated these changes. The alleviative effect of quercetin in bcl-2 family protein expression was more remarkable in non-transfected cells. Conclusions: These results demonstrate that parvalbumin contributes to the maintainace of intracellular calcium concentration and the prevention of apoptosis, and quercetin modulates parvalbumin expression in glutamate-exposed cells. Thus, these findings suggest that quercetin performs neuroprotective function against glutamate toxicity by regulating parvalbumin expression.

Keywords

Acknowledgement

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (NRF-2021R1F1A1058787).

References

  1. Takeuchi A. The transmitter role of glutamate in nervous systems. Jpn J Physiol. 1987;37(4):559-572. https://doi.org/10.2170/jjphysiol.37.559
  2. Lugon MD, Batsikadze G, Fresnoza S, Grundey J, Kuo MF, Paulus W, et al. Mechanisms of nicotinic modulation of glutamatergic neuroplasticity in humans. Cereb Cortex. 2017;27(1):544-553.
  3. Peng S, Zhang Y, Zhang J, Wang H, Ren B. Glutamate receptors and signal transduction in learning and memory. Mol Biol Rep. 2011;38(1):453-460. https://doi.org/10.1007/s11033-010-0128-9
  4. Zhou Y, Danbolt NC. Glutamate as a neurotransmitter in the healthy brain. J Neural Transm (Vienna). 2014;121(8):799-817. https://doi.org/10.1007/s00702-014-1180-8
  5. Choi DW. Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci Lett. 1985;58(3):293-297. https://doi.org/10.1016/0304-3940(85)90069-2
  6. Deng W, Wang H, Rosenberg PA, Volpe JJ, Jensen FE. Role of metabotropic glutamate receptors in oligodendrocyte excitotoxicity and oxidative stress. Proc Natl Acad Sci U S A. 2004;101(20):7751-7756. https://doi.org/10.1073/pnas.0307850101
  7. Gupta K, Hardingham GE, Chandran S. NMDA receptor-dependent glutamate excitotoxicity in human embryonic stem cell-derived neurons. Neurosci Lett. 2013;543:95-100. https://doi.org/10.1016/j.neulet.2013.03.010
  8. Hu NW, Ondrejcak T, Rowan MJ. Glutamate receptors in preclinical research on Alzheimer's disease: update on recent advances. Pharmacol Biochem Behav. 2012;100(4):855-862. https://doi.org/10.1016/j.pbb.2011.04.013
  9. Zhang Z, Zhang S, Fu P, Zhang Z, Lin K, Ko JK, et al. Roles of glutamate receptors in Parkinson's disease. Int J Mol Sci. 2019;20(18):4391. https://doi.org/10.3390/ijms20184391
  10. Rueda CB, Llorente-Folch I, Traba J, Amigo I, Gonzalez-Sanchez P, Contreras L, et al. Glutamate excitotoxicity and Ca2+-regulation of respiration: Role of the Ca2+ activated mitochondrial transporters (CaMCs). Biochim Biophys Acta. 2016;1857(8):1158-1166. https://doi.org/10.1016/j.bbabio.2016.04.003
  11. Stout AK, Raphael HM, Kanterewicz BI, Klann E, Reynolds IJ. Glutamate-induced neuron death requires mitochondrial calcium uptake. Nat Neurosci. 1998;1(5):366-373. https://doi.org/10.1038/1577
  12. Marambaud P, Dreses-Werringloer U, Vingtdeux V. Calcium signaling in neurodegeneration. Mol Neurodegener. 2009;4(1):20. https://doi.org/10.1186/1750-1326-4-20
  13. Annunziato L, Amoroso S, Pannaccione A, Cataldi M, Pignataro G, D'Alessio A, et al. Apoptosis induced in neuronal cells by oxidative stress: role played by caspases and intracellular calcium ions. Toxicol Lett. 2003;139(2-3):125-133. https://doi.org/10.1016/S0378-4274(02)00427-7
  14. Heizmann CW. Parvalbumin, an intracellular calcium-binding protein; distribution, properties and possible roles in mammalian cells. Experientia. 1984;40(9):910-921. https://doi.org/10.1007/BF01946439
  15. Ruden JB, Dugan LL, Konradi C. Parvalbumin interneuron vulnerability and brain disorders. Neuropsychopharmacology. 2021;46(2):279-287. https://doi.org/10.1038/s41386-020-0778-9
  16. Arif SH. A Ca(2+)-binding protein with numerous roles and uses: parvalbumin in molecular biology and physiology. BioEssays. 2009;31(4):410-421. https://doi.org/10.1002/bies.200800170
  17. Schiavone S, Neri M, Trabace L, Turillazzi E. The NADPH oxidase NOX2 mediates loss of parvalbumin interneurons in traumatic brain injury: human autoptic immunohistochemical evidence. Sci Rep. 2017;7(1):8752. https://doi.org/10.1038/s41598-017-09202-4
  18. Havsteen B. Flavonoids, a class of natural products of high pharmacological potency. Biochem Pharmacol. 1983;32(7):1141-1148. https://doi.org/10.1016/0006-2952(83)90262-9
  19. Chen S, Jiang H, Wu X, Fang J. Therapeutic effects of quercetin on inflammation, obesity, and type 2 diabetes. Mediators Inflamm. 2016;2016:9340637. https://doi.org/10.1155/2016/9340637
  20. Reyes-Farias M, Carrasco-Pozo C. The anti-cancer effect of quercetin: molecular implications in cancer metabolism. Int J Mol Sci. 2019;20(13):3177. https://doi.org/10.3390/ijms20133177
  21. Wu XJ, Zhou XB, Chen C, Mao W. Systematic investigation of quercetin for treating cardiovascular disease based on network pharmacology. Comb Chem High Throughput Screen. 2019;22(6):411-420. https://doi.org/10.2174/1386207322666190717124507
  22. Du G, Zhao Z, Chen Y, Li Z, Tian Y, Liu Z, et al. Quercetin protects rat cortical neurons against traumatic brain injury. Mol Med Rep. 2018;17(6):7859-7865.
  23. Park DJ, Shah FA, Koh PO. Quercetin attenuates neuronal cells damage in a middle cerebral artery occlusion animal model. J Vet Med Sci. 2018;80(4):676-683. https://doi.org/10.1292/jvms.17-0693
  24. Yang EJ, Kim GS, Kim JA, Song KS. Protective effects of onion-derived quercetin on glutamate-mediated hippocampal neuronal cell death. Pharmacogn Mag. 2013;9(36):302-308. https://doi.org/10.4103/0973-1296.117824
  25. Sakanashi Y, Oyama K, Matsui H, Oyama TB, Oyama TM, Nishimura Y, et al. Possible use of quercetin, an antioxidant, for protection of cells suffering from overload of intracellular Ca2+: a model experiment. Life Sci. 2008;83(5-6):164-169. https://doi.org/10.1016/j.lfs.2008.05.009
  26. Park DJ, Jeon SJ, Kang JB, Koh PO. Quercetin reduces ischemic brain injury by preventing ischemia-induced decreases in the neuronal calcium sensor protein hippocalcin. Neuroscience. 2020;430:47-62. https://doi.org/10.1016/j.neuroscience.2020.01.015
  27. Park DJ, Kang JB, Shah FA, Koh PO. Quercetin attenuates the reduction of parvalbumin in middle cerebral artery occlusion animal model. Lab Anim Res. 2021;37(1):9. https://doi.org/10.1186/s42826-021-00086-0
  28. Oyama Y, Carpenter DO, Chikahisa L, Okazaki E. Flow-cytometric estimation on glutamate- and kainite-induced increases in intracellular Ca2+ of brain neurons: a technical aspect. Brain Res. 1996;728(1):121-124. https://doi.org/10.1016/0006-8993(96)00504-5
  29. Kao JP, Harootunian AT, Tsien RY. Photochemically generated cytosolic calcium pulses and their detection by fluo-3. J Biol Chem. 1989;264(14):8179-8184. https://doi.org/10.1016/S0021-9258(18)83166-0
  30. Maher P, Davis JB. The role of monoamine metabolism in oxidative glutamate toxicity. J Neurosci. 1996;16(20):6394-6401. https://doi.org/10.1523/jneurosci.16-20-06394.1996
  31. Fukui M, Song JH, Choi J, Choi HJ, Zhu BT. Mechanism of glutamate-induced neurotoxicity in HT22 mouse hippocampal cells. Eur J Pharmacol. 2009;617(1-3):1-11. https://doi.org/10.1016/j.ejphar.2009.06.059
  32. Baimbridge KG, Celio MR, Rogers JH. Calcium-binding proteins in the nervous system. Trends Neurosci. 1992;15(8):303-308. https://doi.org/10.1016/0166-2236(92)90081-I
  33. Girard F, Meszar Z, Marti C, Davis FP, Celio M. Gene expression analysis in the parvalbumin-immunoreactive PV1 nucleus of the mouse lateral hypothalamus. Eur J Neurosci. 2011;34(12):1934-1943. https://doi.org/10.1111/j.1460-9568.2011.07918.x
  34. Szydlowska K, Tymianski M. Calcium, ischemia and excitotoxicity. Cell Calcium. 2010;47(2):122-129. https://doi.org/10.1016/j.ceca.2010.01.003
  35. Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell. 1996;86(1):147-157. https://doi.org/10.1016/S0092-8674(00)80085-9
  36. Smaili SS, Pereira GJ, Costa MM, Rocha KK, Rodrigues L, do Carmo LG, et al. The role of calcium stores in apoptosis and autophagy. Curr Mol Med. 2013;13(2):252-265. https://doi.org/10.2174/156652413804810772
  37. Berridge MJ. Dysregulation of neural calcium signaling in Alzheimer disease, bipolar disorder and schizophrenia. Prion. 2013;7(1):2-13. https://doi.org/10.4161/pri.21767
  38. Koh PO. Ischemic injury decreases parvalbumin expression in a middle cerebral artery occlusion animal model and glutamate-exposed HT22 cells. Neurosci Lett. 2012;512(1):17-21. https://doi.org/10.1016/j.neulet.2012.01.044
  39. Sanderson TH, Kumar R, Sullivan JM, Krause GS. Insulin blocks cytochrome c release in the reperfused brain through PI3-K signaling and by promoting Bax/Bcl-XL binding. J Neurochem. 2008;106(3):1248-1258. https://doi.org/10.1111/j.1471-4159.2008.05473.x
  40. Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature. 1990;348(6299):334-336. https://doi.org/10.1038/348334a0
  41. Oltval ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programed cell death. Cell. 1993;74(4):609-619. https://doi.org/10.1016/0092-8674(93)90509-o