Acknowledgement
This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (NRF-2021R1F1A1058787).
References
- Takeuchi A. The transmitter role of glutamate in nervous systems. Jpn J Physiol. 1987;37(4):559-572. https://doi.org/10.2170/jjphysiol.37.559
- Lugon MD, Batsikadze G, Fresnoza S, Grundey J, Kuo MF, Paulus W, et al. Mechanisms of nicotinic modulation of glutamatergic neuroplasticity in humans. Cereb Cortex. 2017;27(1):544-553.
- Peng S, Zhang Y, Zhang J, Wang H, Ren B. Glutamate receptors and signal transduction in learning and memory. Mol Biol Rep. 2011;38(1):453-460. https://doi.org/10.1007/s11033-010-0128-9
- Zhou Y, Danbolt NC. Glutamate as a neurotransmitter in the healthy brain. J Neural Transm (Vienna). 2014;121(8):799-817. https://doi.org/10.1007/s00702-014-1180-8
- Choi DW. Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci Lett. 1985;58(3):293-297. https://doi.org/10.1016/0304-3940(85)90069-2
- Deng W, Wang H, Rosenberg PA, Volpe JJ, Jensen FE. Role of metabotropic glutamate receptors in oligodendrocyte excitotoxicity and oxidative stress. Proc Natl Acad Sci U S A. 2004;101(20):7751-7756. https://doi.org/10.1073/pnas.0307850101
- Gupta K, Hardingham GE, Chandran S. NMDA receptor-dependent glutamate excitotoxicity in human embryonic stem cell-derived neurons. Neurosci Lett. 2013;543:95-100. https://doi.org/10.1016/j.neulet.2013.03.010
- Hu NW, Ondrejcak T, Rowan MJ. Glutamate receptors in preclinical research on Alzheimer's disease: update on recent advances. Pharmacol Biochem Behav. 2012;100(4):855-862. https://doi.org/10.1016/j.pbb.2011.04.013
- Zhang Z, Zhang S, Fu P, Zhang Z, Lin K, Ko JK, et al. Roles of glutamate receptors in Parkinson's disease. Int J Mol Sci. 2019;20(18):4391. https://doi.org/10.3390/ijms20184391
- Rueda CB, Llorente-Folch I, Traba J, Amigo I, Gonzalez-Sanchez P, Contreras L, et al. Glutamate excitotoxicity and Ca2+-regulation of respiration: Role of the Ca2+ activated mitochondrial transporters (CaMCs). Biochim Biophys Acta. 2016;1857(8):1158-1166. https://doi.org/10.1016/j.bbabio.2016.04.003
- Stout AK, Raphael HM, Kanterewicz BI, Klann E, Reynolds IJ. Glutamate-induced neuron death requires mitochondrial calcium uptake. Nat Neurosci. 1998;1(5):366-373. https://doi.org/10.1038/1577
- Marambaud P, Dreses-Werringloer U, Vingtdeux V. Calcium signaling in neurodegeneration. Mol Neurodegener. 2009;4(1):20. https://doi.org/10.1186/1750-1326-4-20
- Annunziato L, Amoroso S, Pannaccione A, Cataldi M, Pignataro G, D'Alessio A, et al. Apoptosis induced in neuronal cells by oxidative stress: role played by caspases and intracellular calcium ions. Toxicol Lett. 2003;139(2-3):125-133. https://doi.org/10.1016/S0378-4274(02)00427-7
- Heizmann CW. Parvalbumin, an intracellular calcium-binding protein; distribution, properties and possible roles in mammalian cells. Experientia. 1984;40(9):910-921. https://doi.org/10.1007/BF01946439
- Ruden JB, Dugan LL, Konradi C. Parvalbumin interneuron vulnerability and brain disorders. Neuropsychopharmacology. 2021;46(2):279-287. https://doi.org/10.1038/s41386-020-0778-9
- Arif SH. A Ca(2+)-binding protein with numerous roles and uses: parvalbumin in molecular biology and physiology. BioEssays. 2009;31(4):410-421. https://doi.org/10.1002/bies.200800170
- Schiavone S, Neri M, Trabace L, Turillazzi E. The NADPH oxidase NOX2 mediates loss of parvalbumin interneurons in traumatic brain injury: human autoptic immunohistochemical evidence. Sci Rep. 2017;7(1):8752. https://doi.org/10.1038/s41598-017-09202-4
- Havsteen B. Flavonoids, a class of natural products of high pharmacological potency. Biochem Pharmacol. 1983;32(7):1141-1148. https://doi.org/10.1016/0006-2952(83)90262-9
- Chen S, Jiang H, Wu X, Fang J. Therapeutic effects of quercetin on inflammation, obesity, and type 2 diabetes. Mediators Inflamm. 2016;2016:9340637. https://doi.org/10.1155/2016/9340637
- Reyes-Farias M, Carrasco-Pozo C. The anti-cancer effect of quercetin: molecular implications in cancer metabolism. Int J Mol Sci. 2019;20(13):3177. https://doi.org/10.3390/ijms20133177
- Wu XJ, Zhou XB, Chen C, Mao W. Systematic investigation of quercetin for treating cardiovascular disease based on network pharmacology. Comb Chem High Throughput Screen. 2019;22(6):411-420. https://doi.org/10.2174/1386207322666190717124507
- Du G, Zhao Z, Chen Y, Li Z, Tian Y, Liu Z, et al. Quercetin protects rat cortical neurons against traumatic brain injury. Mol Med Rep. 2018;17(6):7859-7865.
- Park DJ, Shah FA, Koh PO. Quercetin attenuates neuronal cells damage in a middle cerebral artery occlusion animal model. J Vet Med Sci. 2018;80(4):676-683. https://doi.org/10.1292/jvms.17-0693
- Yang EJ, Kim GS, Kim JA, Song KS. Protective effects of onion-derived quercetin on glutamate-mediated hippocampal neuronal cell death. Pharmacogn Mag. 2013;9(36):302-308. https://doi.org/10.4103/0973-1296.117824
- Sakanashi Y, Oyama K, Matsui H, Oyama TB, Oyama TM, Nishimura Y, et al. Possible use of quercetin, an antioxidant, for protection of cells suffering from overload of intracellular Ca2+: a model experiment. Life Sci. 2008;83(5-6):164-169. https://doi.org/10.1016/j.lfs.2008.05.009
- Park DJ, Jeon SJ, Kang JB, Koh PO. Quercetin reduces ischemic brain injury by preventing ischemia-induced decreases in the neuronal calcium sensor protein hippocalcin. Neuroscience. 2020;430:47-62. https://doi.org/10.1016/j.neuroscience.2020.01.015
- Park DJ, Kang JB, Shah FA, Koh PO. Quercetin attenuates the reduction of parvalbumin in middle cerebral artery occlusion animal model. Lab Anim Res. 2021;37(1):9. https://doi.org/10.1186/s42826-021-00086-0
- Oyama Y, Carpenter DO, Chikahisa L, Okazaki E. Flow-cytometric estimation on glutamate- and kainite-induced increases in intracellular Ca2+ of brain neurons: a technical aspect. Brain Res. 1996;728(1):121-124. https://doi.org/10.1016/0006-8993(96)00504-5
- Kao JP, Harootunian AT, Tsien RY. Photochemically generated cytosolic calcium pulses and their detection by fluo-3. J Biol Chem. 1989;264(14):8179-8184. https://doi.org/10.1016/S0021-9258(18)83166-0
- Maher P, Davis JB. The role of monoamine metabolism in oxidative glutamate toxicity. J Neurosci. 1996;16(20):6394-6401. https://doi.org/10.1523/jneurosci.16-20-06394.1996
- Fukui M, Song JH, Choi J, Choi HJ, Zhu BT. Mechanism of glutamate-induced neurotoxicity in HT22 mouse hippocampal cells. Eur J Pharmacol. 2009;617(1-3):1-11. https://doi.org/10.1016/j.ejphar.2009.06.059
- Baimbridge KG, Celio MR, Rogers JH. Calcium-binding proteins in the nervous system. Trends Neurosci. 1992;15(8):303-308. https://doi.org/10.1016/0166-2236(92)90081-I
- Girard F, Meszar Z, Marti C, Davis FP, Celio M. Gene expression analysis in the parvalbumin-immunoreactive PV1 nucleus of the mouse lateral hypothalamus. Eur J Neurosci. 2011;34(12):1934-1943. https://doi.org/10.1111/j.1460-9568.2011.07918.x
- Szydlowska K, Tymianski M. Calcium, ischemia and excitotoxicity. Cell Calcium. 2010;47(2):122-129. https://doi.org/10.1016/j.ceca.2010.01.003
- Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell. 1996;86(1):147-157. https://doi.org/10.1016/S0092-8674(00)80085-9
- Smaili SS, Pereira GJ, Costa MM, Rocha KK, Rodrigues L, do Carmo LG, et al. The role of calcium stores in apoptosis and autophagy. Curr Mol Med. 2013;13(2):252-265. https://doi.org/10.2174/156652413804810772
- Berridge MJ. Dysregulation of neural calcium signaling in Alzheimer disease, bipolar disorder and schizophrenia. Prion. 2013;7(1):2-13. https://doi.org/10.4161/pri.21767
- Koh PO. Ischemic injury decreases parvalbumin expression in a middle cerebral artery occlusion animal model and glutamate-exposed HT22 cells. Neurosci Lett. 2012;512(1):17-21. https://doi.org/10.1016/j.neulet.2012.01.044
- Sanderson TH, Kumar R, Sullivan JM, Krause GS. Insulin blocks cytochrome c release in the reperfused brain through PI3-K signaling and by promoting Bax/Bcl-XL binding. J Neurochem. 2008;106(3):1248-1258. https://doi.org/10.1111/j.1471-4159.2008.05473.x
- Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature. 1990;348(6299):334-336. https://doi.org/10.1038/348334a0
- Oltval ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programed cell death. Cell. 1993;74(4):609-619. https://doi.org/10.1016/0092-8674(93)90509-o