DOI QR코드

DOI QR Code

Development of a Platform for Natural Killer Cell Therapy with Antiviral Efficacy

항바이러스 효능을 가진 자연살해세포 치료제 플랫폼 개발

  • 김동수 ((주)이뮤니스바이오 기업부설연구소) ;
  • 윤형석 (국방과학연구소 Chem-Bio 기술센터) ;
  • 이진희 ((주)이뮤니스바이오 기업부설연구소) ;
  • 연다영 ((주)이뮤니스바이오 기업부설연구소) ;
  • 유치호 (국방과학연구소 Chem-Bio 기술센터) ;
  • 구세훈 (국방과학연구소 Chem-Bio 기술센터) ;
  • 송영조 (국방과학연구소 Chem-Bio 기술센터) ;
  • 김정은 (국방과학연구소 Chem-Bio 기술센터) ;
  • 이승호 (국방과학연구소 Chem-Bio 기술센터) ;
  • 이용한 (국방과학연구소 Chem-Bio 기술센터) ;
  • 허경행 (국방과학연구소 Chem-Bio 기술센터) ;
  • 강정화 ((주)이뮤니스바이오 기업부설연구소)
  • Received : 2023.10.15
  • Accepted : 2024.01.10
  • Published : 2024.02.05

Abstract

Various vaccines were rapidly developed during the COVID-19 pandemic to prevent and treat infections but global infections continue, and concerns about new mutations and infectious diseases persist. Thus, active research focuses on developing, producing, and supplying vaccines and treatments for various infectious diseases and potential pandemics. Natural killer(NK) cells, as innate immune cells, can recognize and eliminate abnormal cells like virus-infected and cancer cells. Hence, their development as anticancer and antiviral treatments is rapidly advancing. In this study, optimal short-term culture conditions were identified for allogeneic NK cells by simplifying the culture process through the isolation of NK cells(referred to as NKi cells) and eliminating CD3+ cells(referred to as CD3- cells). NK cells demonstrated reduced viral titer in injection of NK cells into SARS-CoV-2 infected ACE-tg mice increased survival. The study's findings could form the basis for an antiviral treatment platform that swiftly responds to new viral disease pandemics.

Keywords

Acknowledgement

과제창출과 R&D 수행을 제안하고 도와주신 국방과학연구소에 감사드립니다. 또한, 이 작업은 (주)이뮤니스바이오와 국방과학연구소에서 공동으로 수행하였음을 알려드립니다.

References

  1. Hu B, Guo H, Zhou P, Shi Z-L, "Characteristics of SARS-COV-2 and COVID-19," Nat Rev Microbiol., United Kingdom, pp. 141-154, 2021.
  2. She J, Jiang J, Ye L, Hu L, Bai C, Song Y, "2019 novel coronavirus of pneumonia in Wuhan, China: Emerging attack and management strategies," Clin Transl Med., United States, p. 19, 2020.
  3. Mohan BS, Vinod N, "Covid-19: An insight into SARS-cov2 pandemic originated at Wuhan City in Hubei Province of China," J Infect Dis Epidemiol., United States, p. 146, 2020.
  4. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S, "Functions of Natural Killer Cells," Nat Immunol., United Kingdom, pp. 503-10, 2008.
  5. Lee AJ, Kim SG, Jeon CH, Suh HS, Yoon GS, Seo AN, "A case of natural killer cell leukemia misdiagnosed as tuberculous lymphadenopathy," Korean J Lab Med., Korea, pp. 194-198, 2009.
  6. Anguille S, Van Acker HH, Van den Bergh J, Willemen Y, Goossens H, Van Tendeloo VF, Smits EL, Berneman ZN, Lion E, "Interleukin-15 Dendritic Cells Harness NK Cell Cytotoxic Effector Function in a Contact- and IL-15-Dependent Manner," PLoS One., United States, e0123340, 2015.
  7. Carrillo-Bustamante P, Kesmir C, de Boer RJ, "The evolution of natural killer cell receptors," Immunogenetics., Germany, pp. 3-18, 2016.
  8. Kapur R, Evans DL, Harris DT, "An evolutionary conserved target cell antigen along with MHC class I molecules influences susceptibility to murine NK cell lysis," Dev Comp Immunol., United Kingdom, pp. 347-55, 1995.
  9. Kumar S, "Natural killer cell cytotoxicity and its regulation by inhibitory receptors," Immunology., United Kingdom, pp. 383-393, 2018.
  10. Bjorkstrom NK, Strunz B, Ljunggren HG, "Natural killer cells in antiviral immunity," Nat Rev Immunol., United Kingdom, pp. 112-123, 2022.
  11. Orr MT, Lanier LL, "Natural killer cell education and tolerance," Cell., United States, pp. 847-856, 2010.
  12. Zwirner NW, Ziblat A, "Regulation of NK Cell Activation and Effector Functions by the IL-12 Family of Cytokines: The Case of IL-27," Front Immunol., Switzerland, 8:25, 2017.
  13. Mah AY, Cooper MA, "Metabolic Regulation of Natural Killer Cell IFN-γ Production," Crit Rev Immunol., United States, pp. 131-147, 2016.
  14. Somanchi SS, Senyukov VV, Denman CJ, Lee DA, "Expansion, purification, and functional assessment of human peripheral blood NK cells," J Vis Exp., United States, p. 2540, 2011.
  15. Nakazawa T, Morimoto T, Maeoka R, Matsuda R, Nakamura M, Nishimura F, Yamada S, Nakagawa I, Park YS, Nakase H, Tsujimura T, "Establishment of an efficient ex vivo expansion strategy for human natural killer cells stimulated by defined cytokine cocktail and antibodies against natural killer cell activating receptors," Regen Ther., Japan, pp. 185-191, 2022.
  16. Tanaka Y, Nakazawa T, Nakamura M, Nishimura F, Matsuda R, Omoto K, Shida Y, Murakami T, Nakagawa I, Motoyama Y, Morita H, Tsujimura T, Nakase H, "Ex vivo-expanded highly purified natural killer cells in combination with temozolomide induce antitumor effects in human glioblastoma cells in vitro," PLoS One., United States, e0212455, 2019.
  17. Min B, Choi H, Her JH, Jung MY, Kim H-J, Jung M-young, et al., "Optimization of large-scale expansion and cryopreservation of human natural killer cells for anti-tumor therapy," Immune Network, South Korea, e31, 2018.
  18. Bae DS, Lee JK, "Development of NK cell expansion methods using feeder cells from human myelogenous leukemia cell line," Blood Res., South Korea, pp. 154-61, 2014.
  19. Zafarani A, Razizadeh MH, Pashangzadeh S, Amirzarga MRr, Taghavi-Farahabadi M, Mahmoudi M, "Natural killer cells in COVID-19: from infection, to vaccination and therapy," Future Virol., England, 2023.
  20. Kim H, Byun JE, Yoon SR, Koohy H, Jung H, Choi I, "SARS-CoV-2 peptides bind to NKG2D and increase NK cell activity," Cell Immunol., United States, 104454, 2022.
  21. Di Vito C, Calcaterra F, Coianiz N, Terzoli S, Voza A, Mikulak J, Della Bella S, Mavilio D, "Natural Killer Cells in SARS-CoV-2 Infection: Pathophysiology and Therapeutic Implications," Front Immunol., Switzerland, 888248, 2022.
  22. Capuano C, Pighi C, Battella S, De Federicis D, Galandrini R, Palmieri G, Harnessing Cd16-Mediated Nk Cell Functions to Enhance Therapeutic Efficacy of Tumor-Targeting Mabs. Cancers(Basel), Switzerland, 2021.
  23. Pituch-Noworolska AM, "NK cells in SARS-CoV-2 infection," Cent Eur J Immunol., Poland, pp. 95-101, 2022.
  24. Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK, et al., Identification and Characterization of a New Member of the Tnf Family That Induces Apoptosis. Immunity, United States, pp. 673-682, 1995.
  25. Bjorkstrom NK, Riese P, Heuts F, Andersson S, Fauriat C, Ivarsson MA, Bjorklund AT, Tullberg MF, Michaelsson J, Rottenberg ME, Guzman CA, Ljunggren HG, Malmberg KJ, Expression patterns of NKG2A, KIR, and CD57 define a process of CD56dim NK-cell differentiation uncoupled from NK-cell education. Blood, United States, pp. 3853-3864, 2010.
  26. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS, "Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and  potential therapeutic target," Intensive Care Med., United States, pp. 586-590, 2020.
  27. Deng X, Terunuma H, Nieda M, "Exploring the Utility of NK Cells in COVID-19," Biomedicines., Switzerland, 1002, 2022.