• Title/Summary/Keyword: SARS-CoV-2

Search Result 225, Processing Time 0.026 seconds

Diagnostic Techniques for SARS-CoV-2 Detection (SARS-CoV-2의 진단기술)

  • Kim, Jong-Sik;Kang, Na-Kyung;Park, Seon-Mi;Lee, Eun-Joo;Chung, Kyung Tae
    • Journal of Life Science
    • /
    • v.30 no.8
    • /
    • pp.731-741
    • /
    • 2020
  • Coronavirus disease 19 (COVID-19) is caused by SARS-CoV-2 (Severe Acute Respiratory SyndromeCoronavirus 2). To date, seven coronaviruses that can infect humans were reported. Among them, infections with four coronavirus strains (HCoV-229E, HCoV-OC43, HCoV-NL63, and HCoV-HKU1) resulted in mild symptoms such as common cold, whereas SARS-CoV and MERS-CoV caused severe symptoms and epidemics in 2002 and 2012, respectively. In the most recent, SARS-CoV-2 was first reported in Wuhan, China in December 2019 and became a notorious cause of the ongoing global pandemics. To diagnose, treat, and prevent COVID-19, the development of rapid and accurate diagnostic tools, specific therapeutic drugs, and safe vaccines essentially are required. In order to develop these powerful tools, it is prerequisite to understand a phenotype, a genotype, and life cycle of SARS-CoV-2. Diagnostic techniques have been developing rapidly around world and many countries take the fast track system to accelerate approval. Approved diagnostic devices are rapidly growing facing to urgent demand to identify carriers. Currently developed commercial diagnostic devices are divided into mainly two categories: molecular assay and serological & immunological assay. Molecular assays begins the reverse transcription step following polymerase chain reaction or isothermal amplification. Immunological assay targets SARS-CoV-2 antigen or anti-SARS-CoV-2 antibody of samples. In this review, we summarize the phenotype, genome structure and gene expression of SARS-CoV-2 and provide the knowledge on various diagnostic techniques for SARS-CoV-2.

Comparative genetic analyses of Korean bat coronaviruses with SARS-CoV and the newly emerged SARS-CoV-2

  • Na, Eun-Jee;Lee, Sook-Young;Kim, Hak Jun;Oem, Jae-Ku
    • Journal of Veterinary Science
    • /
    • v.22 no.1
    • /
    • pp.12.1-12.11
    • /
    • 2021
  • Background: Bats have been considered natural reservoirs for several pathogenic human coronaviruses (CoVs) in the last two decades. Recently, a bat CoV was detected in the Republic of Korea; its entire genome was sequenced and reported to be genetically similar to that of the severe acute respiratory syndrome CoV (SARS-CoV). Objectives: The objective of this study was to compare the genetic sequences of SARS-CoV, SARS-CoV-2, and the two Korean bat CoV strains 16BO133 and B15-21, to estimate the likelihood of an interaction between the Korean bat CoVs and the human angiotensin-converting enzyme 2 (ACE2) receptor. Methods: The phylogenetic analysis was conducted with the maximum-likelihood (ML) method using MEGA 7 software. The Korean bat CoVs receptor binding domain (RBD) of the spike protein was analyzed by comparative homology modeling using the SWISS-MODEL server. The binding energies of the complexes were calculated using PRODIGY and MM/GBGA. Results: Phylogenetic analyses of the entire RNA-dependent RNA polymerase, spike regions, and the complete genome revealed that the Korean CoVs, along with SARS-CoV and SARS-CoV-2, belong to the subgenus Sarbecovirus, within BetaCoVs. However, the two Korean CoVs were distinct from SARS-CoV-2. Specifically, the spike gene of the Korean CoVs, which is involved in host infection, differed from that of SARS-CoV-2, showing only 66.8%-67.0% nucleotide homology and presented deletions within the RBD, particularly within regions critical for cross-species transmission and that mediate interaction with ACE2. Binding free energy calculation revealed that the binding affinity of Korean bat CoV RBD to hACE2 was drastically lower than that of SARS-CoV and SARS-CoV-2. Conclusions: These results suggest that Korean bat CoVs are unlikely to bind to the human ACE2 receptor.

Control Methods for Aerosols and Airborne Spreading Theory of SARS-CoV-2 (사스-코로나바이러스-2 공기 중 부유 전파이론과 에어로졸 제어기술)

  • Lee, Byung Uk
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.2
    • /
    • pp.123-130
    • /
    • 2021
  • Objectives: Control methods against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) aerosols have been introduced. Airborne spreading theories for SARS-CoV-2 were analyzed in this study. Methods: Control methods for airborne microorganisms were discussed. Studies on theoretical estimations for airborne spreading of SARS-CoV-2 were presented and analyzed. Analytic calculations were conducted for explaining control techniques for airborne microorganisms. Results: Control methods for SARS-CoV-2 aerosols can include physical or biological procedures. Characterization of SARS-CoV-2 aerosols and massive clustering infection cases of COVID-19 support the airborne spreading theories of SARS-CoV-2. It is necessary to consider the disadvantages of control methods for airborne microorganisms. Conclusions: A study on control methods against bioaerosols is necessary to prevent the spreading of viruses. Airborne spreading theories of SARS-CoV-2 were supported by the current evidence, but further studies are needed to confirm these theories.

Blood test results from simultaneous infection of other respiratory viruses in COVID-19 patients

  • In Soo, Rheem;Jung Min, Park;Seung Keun, Ham;Jae Kyung, Kim
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.316-321
    • /
    • 2022
  • Since 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread rapidly, infecting millions of people worldwide. On March 11, 2020, the World Health Organization declared coronavirus disease (COVID-19) a pandemic owing to the worldwide spread of SARS-CoV-2, which created an unprecedented burden on the global healthcare system. In this context, there are increasing concerns regarding co-infections with other respiratory viruses, such as the influenza virus. In this study, clinical data of patients infected with SARS-CoV-2 and other respiratory viruses were compared with patients infected with SARS-CoV-2 alone. The hematology and blood biochemistry results of 178 patients infected with SARS-CoV-2 , who were tested on admission, were retrospectively reviewed. In patients with SARS-CoV-2 and adenovirus co-infection, C-reactive protein levels were elevated on admission, whereas lactate dehydrogenase (LDH), prothrombin time, international normalized ratio, activated partial thromboplastin clotting time, and bilirubin values were all within the normal range. Moreover, patients with SARS-CoV-2 and human bocavirus co-infection had low LDH and high bilirubin levels on admission. These findings reveal the clinical features of respiratory virus and SARS-CoV-2 co-infections and support the development of appropriate approaches for treating patients with SARS-CoV-2 and other respiratory virus co-infections.

Microsecond molecular dynamics simulations revealed the inhibitory potency of amiloride analogs against SARS-CoV-2 E viroporin

  • Jaber, Abdullah All;Chowdhury, Zeshan Mahmud;Bhattacharjee, Arittra;Mourin, Muntahi;Keya, Chaman Ara;Bhuyan, Zaied Ahmed
    • Genomics & Informatics
    • /
    • v.19 no.4
    • /
    • pp.48.1-48.10
    • /
    • 2021
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encodes small envelope protein (E) that plays a major role in viral assembly, release, pathogenesis, and host inflammation. Previous studies demonstrated that pyrazine ring containing amiloride analogs inhibit this protein in different types of coronavirus including SARS-CoV-1 small envelope protein E (SARS-CoV-1 E). SARS-CoV-1 E has 93.42% sequence identity with SARS-CoV-2 E and shared a conserved domain NS3/small envelope protein (NS3_envE). Amiloride analog hexamethylene amiloride (HMA) can inhibit SARS-CoV-1 E. Therefore, we performed molecular docking and dynamics simulations to explore whether amiloride analogs are effective in inhibiting SARS-CoV-2 E. To do so, SARS-CoV-1 E and SARS-CoV-2 E proteins were taken as receptors while HMA and 3-amino-5-(azepan-1-yl)-N-(diaminomethylidene)-6-pyrimidin-5-ylpyrazine-2-carboxamide (3A5NP2C) were selected as ligands. Molecular docking simulation showed higher binding affinity scores of HMA and 3A5NP2C for SARS-CoV-2 E than SARS-CoV-1 E. Moreover, HMA and 3A5NP2C engaged more amino acids in SARS-CoV-2 E. Molecular dynamics simulation for 1 ㎲ (1,000 ns) revealed that these ligands could alter the native structure of the proteins and their flexibility. Our study suggests that suitable amiloride analogs might yield a prospective drug against coronavirus disease 2019.

Epidemiology, virology, and clinical features of severe acute respiratory syndrome -coronavirus-2 (SARS-CoV-2; Coronavirus Disease-19)

  • Park, Su Eun
    • Clinical and Experimental Pediatrics
    • /
    • v.63 no.4
    • /
    • pp.119-124
    • /
    • 2020
  • A cluster of severe pneumonia of unknown etiology in Wuhan City, Hubei province in China emerged in December 2019. A novel coronavirus named severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was isolated from lower respiratory tract sample as the causative agent. The current outbreak of infections with SARS-CoV-2 is termed Coronavirus Disease 2019 (COVID-19) by the World Health Organization (WHO). COVID-19 rapidly spread into at least 114 countries and killed more than 4,000 people by March 11 2020. WHO officially declared COVID-19 a pandemic on March 11, 2020. There have been 2 novel coronavirus outbreaks in the past 2 decades. The outbreak of severe acute respiratory syndrome (SARS) in 2002-2003 caused by SARS-CoV had a case fatality rate of around 10% (8,098 confirmed cases and 774 deaths), while Middle East respiratory syndrome (MERS) caused by MERS-CoV killed 861 people out of a total 2,502 confirmed cases between 2012 and 2019. The purpose of this review is to summarize known-to-date information about SARS-CoV-2, transmission of SARS-CoV-2, and clinical features.

One-health Approach in the Post-COVID-19 Era: Focusing on Animal Infection (One-health 관점에서 본 Post-COVID-19 시대의 동물 감염)

  • Hye-Jeong Jang;Sun-Nyoung Yu;O-Yu Kwon;Soon-Cheol Ahn
    • Journal of Life Science
    • /
    • v.33 no.2
    • /
    • pp.199-207
    • /
    • 2023
  • To prepare for the threat of a future epidemic in the post-COVID-19 era, research based on the one-health concept (i.e., the health of humans, animals, and the environment as "one") is essential. Cross-species infections are being identified as a result of the high infection rate and viral load of SARS-CoV-2 in humans. The possibility of transmission of SARS-CoV-2 from humans to mink has been determined. In addition, the transmission of SARS-CoV-2 from humans to cats through contact has been considered possible. The data so far show that livestock and poultry are less likely to be infected with SARS-CoV-2. However, if infections are established through a new mutation, the resulting diseases are expected to have enormous ripple effects on various fields, such as human food security, the economy, and trade. In addition, there are concerns about the endemic prospect of SARS-CoV-2 and the high accessibility of companion animals. This is because the evolution of the virus likely occurs in animal hosts. Once SARS-CoV-2 is established in other species, they might serve as intermediate hosts for the re-emergence of the virus in the human population. Thus, it is necessary to ensure a rapid response to future outbreaks by accumulating research data on the animal infection of SARS-CoV-2. These data can have implications for the development of animal models for vaccines and therapeutics against SARS-CoV-2. Therefore, in this study, epidemiological reviews were analyzed, and response strategies against SARS-CoV-2 infection in animals were presented using the One-health approach.

Phenotypes and Functions of SARS-CoV-2-Reactive T Cells

  • Jung, Min Kyung;Shin, Eui-Cheol
    • Molecules and Cells
    • /
    • v.44 no.6
    • /
    • pp.401-407
    • /
    • 2021
  • Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which is an ongoing pandemic disease. SARS-CoV-2-specific CD4+ and CD8+ T-cell responses have been detected and characterized not only in COVID-19 patients and convalescents, but also unexposed individuals. Here, we review the phenotypes and functions of SARS-CoV-2-specific T cells in COVID-19 patients and the relationships between SARS-CoV-2-specific T-cell responses and COVID-19 severity. In addition, we describe the phenotypes and functions of SARS-CoV-2-specific memory T cells after recovery from COVID-19 and discuss the presence of SARS-CoV-2-reactive T cells in unexposed individuals and SARS-CoV-2-specific T-cell responses elicited by COVID-19 vaccines. A better understanding of T-cell responses is important for effective control of the current COVID-19 pandemic.

Computational analysis of SARS-CoV-2, SARS-CoV, and MERS-CoV genome using MEGA

  • Sohpal, Vipan Kumar
    • Genomics & Informatics
    • /
    • v.18 no.3
    • /
    • pp.30.1-30.7
    • /
    • 2020
  • The novel coronavirus pandemic that has originated from China and spread throughout the world in three months. Genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) predecessor, severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) play an important role in understanding the concept of genetic variation. In this paper, the genomic data accessed from National Center for Biotechnology Information (NCBI) through Molecular Evolutionary Genetic Analysis (MEGA) for statistical analysis. Firstly, the Bayesian information criterion (BIC) and Akaike information criterion (AICc) are used to evaluate the best substitution pattern. Secondly, the maximum likelihood method used to estimate of transition/transversions (R) through Kimura-2, Tamura-3, Hasegawa-Kishino-Yano, and Tamura-Nei nucleotide substitutions model. Thirdly and finally nucleotide frequencies computed based on genomic data of NCBI. The results indicate that general times reversible model has the lowest BIC and AICc score 347,394 and 347,287, respectively. The transition/transversions bias for nucleotide substitutions models varies from 0.56 to 0.59 in MEGA output. The average nitrogenous bases frequency of U, C, A, and G are 31.74, 19.48, 28.04, and 20.74, respectively in percentages. Overall the genomic data analysis of SARS-CoV-2, SARS-CoV, and MERS-CoV highlights the close genetic relationship.

Close Relationship Between SARS-Coronavirus and Group 2 Coronavirus

  • Kim, Ok-Ju;Lee, Dong-Hun;Lee, Chan-Hee
    • Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.83-91
    • /
    • 2006
  • The sudden appearance and potential lethality of severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) in humans has resulted in a focusing of new attention on the determination of both its origins and evolution. The relationship existing between SARS-CoV and other groups of coronaviruses was determined via analyses of phylogenetic trees and comparative genomic analyses of the coronavirus genes: polymerase (Orflab), spike (S), envelope (E), membrane (M) and nucleocapsid (N). Although the coronaviruses are traditionally classed into 3 groups, with SARS-CoV forming a $4^{th}$ group, the phylogenetic position and origins of SARS-CoV remain a matter of some controversy. Thus, we conducted extensive phylogeneitc analyses of the genes common to all coronavirus groups, using the Neighbor-joining, Maximum-likelihood, and Bayesian methods. Our data evidenced largely identical topology for all of the obtained phylogenetic trees, thus supporting the hypothesis that the relationship existing between SARS-CoV and group 2 coronavirus is a monophyletic one. Additional comparative genomic studies, including sequence similarity and protein secondary structure analyses, suggested that SARS-Co V may bear a closer relationship with group 2 than with the other coronavirus groups. Although our data strongly suggest that group 2 coronaviruses are most closely related with SARS-CoV, further and more detailed analyses may provide us with an increased amount of information regarding the origins and evolution of the coronaviruses, most notably SARS-CoV.