• Title/Summary/Keyword: ZnSnO layer

Search Result 78, Processing Time 0.027 seconds

Performances of a-Si:H thin-film solar cells with buffer layers at TCO/p a-SiC:H interface (CO/p a-SiC:H 계면의 버퍼층에 따른 비정질 실리콘 박막태양전지 동작특성)

  • Lee, Ji-Eun;Jang, Ji-Hun;Jung, Jin-Won;Park, Sang-Hyun;Jo, Jun-Sik;Yoon, Kyung-Hoon;Song, Jin-Soo;Kim, Dong-Hwan;Lee, Jeong-Chul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.32-32
    • /
    • 2009
  • 실리콘 박막 태양전지에서 전면 투명전도막(TCO)은 태양전지의 전기, 광학적 특성을 결정하는 중요한 기능을 한다. ZnO:Al TCO는 기존에 사용되던 $SnO_2:F$와는 비정질 실리콘(a-Si:H) 박막 태양전지의 윈도우 층으로 사용되는 p a-SiC:H와의 일함수(work function) 차이로 인해 접촉전위(contact barrier)를 형성하게 되며 이로 인해 태양전지의 충진율(fill factor)이 $SnO_2:F$에 비해 감소하는 단점을 보인다. 본 연구에서는 ZnO:Al/p a-SiC:H 계면의 접촉전위 발생원인 및 태양전지 충진율 감소현상에 관한 정확한 원인규명을 위해 다양한 특성을 갖는 버퍼층을 삽입하여 계면특성 및 태양전지의 동작특성을 분석하고자 한다.

  • PDF

The Effects of Al-Alloying Elements on the Melt Oxidation(II, Oxide Layer Shape and Microstructure) (Al-합금의 원소가 용융산화에 미치는 영향(ll. 산화층 형상과 미세구조))

  • Jo, Chang-Hyeon;Gang, Jeong-Yun;Kim, Il-Su;Kim, Cheol-Su;Kim, Chang-Uk
    • Korean Journal of Materials Research
    • /
    • v.7 no.8
    • /
    • pp.660-667
    • /
    • 1997
  • AI-Mg-합금의 용융산화에 의해 생성되는 AlO$_{2}$O$_{3}$-복합재료의 미세구조에 미치는 합금원소의 영향을 연구하였다. AI-1Mg 합금과 AI-3Mg 합금을 기본으로하여 Si, Zn, Sn, Cu, Ni, Ca, Ce를 1, 3, 5 %를 무게비로 첨가하였다. 각 합금을 1473K에서 20시간 유지하여 산화시킨 후 산화층의 거시적 형상과 미세구조를 광학현미경으로 관찰하였다. 각 미세구조의 상분율을 상분석기로 측정하였다. 산화층의 최첨단면은 SEM과 EDX로 관찰하고 분석하였다. Cu나 Ni를 첨가한 합금으로부터 성장한 산화층의 미세구조가 가장 치밀하였다. Zn이 포함된 합금으로부터 성장한 산화층 최첨단 성장면에는 ZnO가 관찰되었다. Zn이 포함되지 않은 다른 합금의 성장 전면에는 항상 MgAi$_{2}$O$_{4}$상이 관찰되었다.

  • PDF

Effects of Gate Insulators on the Operation of ZnO-SnO2 Thin Film Transistors (ZnO-SnO2 투명박막트랜지스터의 동작에 미치는 게이트 절연층의 영향)

  • Cheon, Young Deok;Park, Ki Cheol;Ma, Tae Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.3
    • /
    • pp.177-182
    • /
    • 2013
  • Transparent thin film transistors (TTFT) were fabricated on $N^+$ Si wafers. $SiO_2$, $Si_3N_4/SiO_2$ and $Al_2O_3/SiO_2$ grown on the wafers were used as gate insulators. The rf magnetron sputtered zinc tin oxide (ZTO) films were adopted as active layers. $N^+$ Si wafers were wet-oxidized to grow $SiO_2$. $Si_3N_4$ and $Al_2O_3$ films were deposited on the $SiO_2$ by plasma enhanced chemical vapor deposition (PECVD) and atomic layer deposition (ALD), respectively. The mobility, $I_{on}/I_{off}$ and subthreshold swing (SS) were obtained from the transfer characteristics of TTFTs. The properties of gate insulators were analyzed by comparing the characteristics of TTFTs. The property variation of the ZTO TTFTs with time were observed.

Fabrication and Characterization of Portable Electronic Nose System using Gas Sensor Array and Artificial Neural Network (가스센서 어레이와 인공 신경망을 이용한 소형 전자코 시스템의 제작 및 특성)

  • 홍형기;권철한;윤동현;김승렬;이규정
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.99-102
    • /
    • 1997
  • An electronic nose system is an instrument designed far mimicking human olfactory system. It consists generally of gas (odor) sensor array corresponding to olfactory receptors of human nose and artificial neural network pattern recognition technique based on human biological odor sensing mechanism. Considerable attempts to develop the electronic nose system have been made far applications in the fields of floods, drinks, cosmetics, environment monitoring, etc. A portable electronic nose system has been fabricated by using oxide semiconductor gas sensor array and pattern recognition technique such as principal component analysis (PCA) and back propagation artificial neural network The sensor array consists of six thick film gas sensors whose sensing layers are Pd-doped WO$_3$ Pt-doped SnO$_2$ TiO$_2$-Sb$_2$O$_3$-Pd-doped SnO$_2$ TiO$_2$-Sb$_2$O$_{5}$-Pd-doped SnO$_2$+Pd filter layer, A1$_2$O$_3$-doped ZnO and PdCl$_2$-doped SnO$_2$. As an application the system has been used to identify CO/HC car exhausting gases and the identification has been successfully demonstrated.d.

  • PDF

Investigation on the Stability Enhancement of Oxide Thin Film Transistor (산화물반도체 트랜지스터 안정성 향상 연구)

  • Lee, Sang Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.5
    • /
    • pp.351-354
    • /
    • 2013
  • Thin-film transistors(TFTs) with silicon-zinc-tin-oxide(SiZnSnO, SZTO) channel layer are fabricated by rf sputtering method. Electrical properties were changed by different annealing treatment of dry annealing and wet annealing. This procedure improves electrical property especially, stability of oxide TFT. Improved electrical properties are ascribed to desorption of the negatively charged oxygen species from the surfaces by annealing treatment. The threshold voltage ($V_{th}$) shifted toward positive as increasing Si contents in SZTO system. Because the Si has a lower standard electrode potential (SEP) than that that of Sn, Zn, resulting in the degeneration of the oxygen vacancy ($V_O$). As a result, the Si acts as carrier suppressor and oxygen binder in the SZTO as well as a $V_{th}$ controller, resulting in the enhancement of stability of TFTs.

Pressure Dependency of Electrical Properties of In-free SiZnSnO Thin Film Transistors (공정 압력에 따라 제작되어진 비인듐계 SiZnSnO 박막을 이용한 박막트랜지스터의 성능 연구)

  • Lee, Sang-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.8
    • /
    • pp.580-583
    • /
    • 2012
  • The dependency of processing pressure on the electrical performances in amorphous silicon-zinc-tin-oxide thin film transistors (SZTO-TFT) has been investigated. The SZTO channel layers were deposited by using radio frequency (RF) magnetron sputtering method with different partial pressure. The field effect mobility (${\mu}_{FE}$) increased and threshold voltage ($V_{th}$) shifted to negative direction with increasing pressure during deposition processing. As a result, oxygen vacancies generated in SZTO channel layer with increasing partial pressure resulted in negative shift in $V_{th}$ and increase in on-current.

Fabrication and Characterization of Cu3SbS4 Solar Cell with Cd-free Buffer

  • Han, Gyuho;Lee, Ji Won;Kim, JunHo
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1794-1798
    • /
    • 2018
  • We have grown famatinite $Cu_3SbS_4$ films by using sulfurization of Cu/Sb stack film. Sulfurization at $500^{\circ}C$ produced famatinite $Cu_3SbS_4$ phase, while $400^{\circ}C$ and $450^{\circ}C$ sulfurization exhibited unreacted and mixed phases. The fabricated $Cu_3SbS_4$ film showed S-deficiency, and secondary phase of $Cu_{12}Sb_4S_{13}$. The secondary phase was confirmed by X-ray diffraction, Raman spectroscopy, photoluminescence and external quantum efficiency measurements. We have also fabricated solar cell in substrate type structure, ITO/ZnO/(Zn,Sn)O/$Cu_3SbS_4$/Mo/glass, where $Cu_3SbS_4$ was used as a absorber layer and (Zn,Sn)O was employed as a Cd-free buffer. Our best cell showed power conversion efficiency of 0.198%. Characterization results of $Cu_3SbS_4$ absorber indicates deep defect (due to S-deficiency) and low shunt resistance (due to $Cu_{12}Sb_4S_{13}$ phase). Thus in order to improve the cell efficiency, it is required to grow high quality $Cu_3SbS_4$ film with no S-deficiency and no secondary phase.

Fabrication and Characterization of Portable Electronic Nose System for Identification of CO/HC Gases (CO/HC 가스 인식을 위한 소형 전자코 시스템의 제작 및 특성)

  • Hong, Hyung-Ki;Kwon, Chul-Han;Yun, Dong-Hyun;Kim, Seung-Ryeol;Lee, Kyu-Chung;Kim, In-Soo;Sung, Yung-Kwon
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.476-482
    • /
    • 1997
  • A portable electronic nose system has been fabricated and characterized using an oxide semiconductor gas sensor array and pattern recognition techniques such as principal component analysis and back-propagation artificial neural network. The sensor array consists of six thick-film gas sensors whose sensing layers are Pd-doped $WO_{3}$, Pt-doped $SnO_{2}$, $TiO_{2}-Sb_{2}O_{5}-Pd$-doped $SnO_{2}$, $TiO_{2}-Sb_{2}O_{5}-Pd$-doped $SnO_{2}$ + Pd coated layer, $Al_{2}O_{3}$-doped ZnO and $PdCl_{2}$-doped $SnO_{2}$. The portable electronic nose system consists of an 16bit Intel 80c196kc as CPU, an EPROM for storing system main program, an EEPROM for containing optimized connection weights of artificial neural network, an LCD for displaying gas concentrations. As an application the system has been used to identify 26 carbon monoxide/hydrocarbon (CO/HC) car exhausting gases in the concentration range of CO 0%/HC 0 ppm to CO 7.6%/HC 400 ppm and the identification has been successfully demonstrated.

  • PDF

Structural and Optical Properties of AZO/Ag/AZO Films for Dye Sensitized Solar Cell (염료감응 태양전지 응용을 위한 다층박막구조 투명전도막의 특성평가)

  • Cho, Hyun-Jin;Hur, Sung-Gi;Park, Jong-Hyun;Seong, Nak-Jin;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.24-24
    • /
    • 2009
  • 투명전극 (TCO Transparent Conductive Oxide)은 Solar cell, Touch panel, Sensor 등 많은 분야에 이용되어지고 있다. ZnO 그리고 $SnO_2$는 ITO룰 대체하기 위하여 오래전부터 연구가 되어지고 있다. 하지만 ZnO가 가지고 있는 많은 장점에도 불구하고 ITO를 대체하기 위한 전기적 특성이 충분하지 않다. 따라서 ZnO에 Al를 도핑하는 등 다양한 연구가 진행되어왔다. 본 실험은 우수한 광학특성 및 전기적 (10-5) 특성을 확보하기 위하여 AZO/Ag/AZO 다층박막구조 형성하였다. 또한 염료감응 태양전지에 적용하기 위하여 다층박막구조를 이용한 안정성 테스트를 진행하였다.

  • PDF

Transparent Oxide Thin Film Transistors with Transparent ZTO Channel and ZTO/Ag/ZTO Source/Drain Electrodes

  • Choi, Yoon-Young;Choi, Kwang-Hyuk;Kim, Han-Ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.127-127
    • /
    • 2011
  • We investigate the transparent TFTs using a transparent ZnSnO3 (ZTO)/Ag/ZTO multilayer electrode as S/D electrodes with low resistivity of $3.24{\times}10^{-5}$ ohm-cm, and high transparency of 86.29% in ZTO based TFTs. The Transparent TFTs (TTFTs) are prepared on glass substrate coated 100 nm of ITO thin film. On atomic layer deposited $Al_2\;O_3$, 50 nm ZTO layer is deposited by RF magnetron sputtering through a shadow mask for channel layer using ZTO target with 1 : 1 molar ratio of ZnO : $SnO_2$. The power of 100W, the working pressure of 2mTorr, and the gas flow of Ar 20 sccm during the ZTO deposition. After channel layer deposition, a ZTO (35 nm)/Ag (12 nm)/ZTO(35 nm) multilayer is deposited by DC/RF magnetron sputtering to form transparent S/D electrodes which are patterned through the shadow mask. Devices are annealed in air at 300$^{\circ}C$ for 30 min following ZTO deposition. Using UV/Visible spectrometer, the optical transmittances of the TTFT using ZTO/Ag/ ZTO multilayer electrodes are compared with TFT using Mo electrode. The structural properties of ZTO based TTFT with ZTO/Ag/ZTO multilayer electrodes are analyzed by high resolution transmission electron microscopy (HREM) and X-ray photoelectron spectroscopy (XPS). The transfer and output characterization of ZTO TTFTs are examined by a customized probe station with HP4145B system in are.

  • PDF