Fabrication and Characterization of Cu3SbS4 Solar Cell with Cd-free Buffer

  • Han, Gyuho (Department of Physics, Incheon National University) ;
  • Lee, Ji Won (Department of Physics, Incheon National University) ;
  • Kim, JunHo (Department of Physics, Incheon National University)
  • Received : 2018.11.21
  • Accepted : 2018.11.22
  • Published : 2018.11.30


We have grown famatinite $Cu_3SbS_4$ films by using sulfurization of Cu/Sb stack film. Sulfurization at $500^{\circ}C$ produced famatinite $Cu_3SbS_4$ phase, while $400^{\circ}C$ and $450^{\circ}C$ sulfurization exhibited unreacted and mixed phases. The fabricated $Cu_3SbS_4$ film showed S-deficiency, and secondary phase of $Cu_{12}Sb_4S_{13}$. The secondary phase was confirmed by X-ray diffraction, Raman spectroscopy, photoluminescence and external quantum efficiency measurements. We have also fabricated solar cell in substrate type structure, ITO/ZnO/(Zn,Sn)O/$Cu_3SbS_4$/Mo/glass, where $Cu_3SbS_4$ was used as a absorber layer and (Zn,Sn)O was employed as a Cd-free buffer. Our best cell showed power conversion efficiency of 0.198%. Characterization results of $Cu_3SbS_4$ absorber indicates deep defect (due to S-deficiency) and low shunt resistance (due to $Cu_{12}Sb_4S_{13}$ phase). Thus in order to improve the cell efficiency, it is required to grow high quality $Cu_3SbS_4$ film with no S-deficiency and no secondary phase.


Supported by : National Research Foundation of Korea (NRF)


  1. W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu and D. B. Mitzi, Adv. Energy Mater. 4, 1301465 (2014).
  2. O. Gunawan, T. K. Todorov and D. B. Mitzi, Appl. Phys. Lett. 97, 233506 (2010).
  3. T. Gokmen, O. Gunawan, T. K. Todorov and D. B. Mitzi, Appl. Phys. Lett. 103, 103506 (2013).
  4. J. V. Embden, K. Latham, N. W. Duffy and Y. Tachibana, J. Am. Chem. Soc. 135, 11562 (2013).
  5. C. T. Crespo, J. Phys. Chem. C 120, 7959 (2016).
  6. W. Septina, S. Ikeda, Y. Iga, T. Harada and M. Matsumura, Thin Solid Films 550, 700 (2014).
  7. L.Wang, B. Yan, Z. Xia, M. Leng, Y. Zhou, D. J. Xue, J. Zhong, L. Gao, H. Song and J. Tang, Sol. Energy Mater. Sol. Cells 144, 33 (2016).
  8. N. D. Franzer, N. R. Paudel, C. Xiao and Y. Yan, in PVSC 2014. IEEE. 40th (2014), p. 2326.
  9. U. Chalaphati, B. Poornaprakash and S-H. Park, Ceramic International 43, 5229 (2017).
  10. T. Shi, A-J. Yin, M. Al-Jassim and Y. Yan, Appl. Phys. Lett. 103, 152105 (2013).
  11. A. Hultqvist, C. Platzer-Bjorkman, U. Zimmermann, M. Edoff and T. Torndahl, Prog. Photovolt.: Res. Appl. 20, 883 (2012).
  12. C. Platzer-Bjorkman, C. Frisk, J. K. Larsen, T. Ericson, S-Y. Li, J. J. S. Scragg, J. Keller, F. Larsson and T. Torndahl, Appl. Phys. Lett. 107, 243904 (2015).
  13. D. B. Khadka and J. Kim, CrystEngComm 15, 10500 (2013).
  14. S. Kim, J. Kim, T. R. Rana, K-W. Kim and M-H. Kwon, Curr. Appl. Phys. 18, 191 (2018).
  15. S. A. McClary, R. B. Balow and R. Agrawal, J. Mater. Chem. C 6, 10538 (2018).
  16. C. An, Y. Jin, K. Tang and Y. Qian, J. Mater. Chem. 13, 301 (2003).
  17. M. Bella, S. Blayac, C. Rivero, V. Serradeil and P. Boulet, Computational Material Science 108, 264 (2015).
  18. R. Jeanloz and M. L. Johnson, Phys. Chem. Minerals 11, 52 (1984).
  19. S. H. Chaki, J. P. Tailor and M. P. Deshpande, Materials Science in Semiconductor Processing 27, 577 (2014).
  20. P. Skacha, E. Buixaderas, J. Plasil, J. Sejkora, V. R. Golias and V. Vlcek, The Canadian Mineralogist 52, 501 (2014).
  21. T. Rath, A. J. MacLachian, M. D. Brown and S. A. Haque, J. Mater. Chem. A 3, 24155 (2015).
  22. L. Yu, R. S. Kokenyesi, D. A. Keszler and A. Zunger, Adv. Energy Mater 3, 43 (2013).
  23. C. Yan, Z. Su, E. Gu, T. Cao, J. Yang, J. Liu, F. Liu, Y. Lai, J. Li and Y. Liu, RSC Adv. 2, 10481 (2012).
  24. S. J. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong and J. H. Yun, Appl. Phys. Lett. 97, 021905 (2010).