• Title/Summary/Keyword: ZnS:Mn,Cu.Cl

Search Result 52, Processing Time 0.022 seconds

Nutritional Value of Cottonseeds and It's Derived Products : I. Physical Fractionations and Proximate Composition

  • Mujahid, A.;Abdullah, M.;Barque, A.R.;Gilani, A.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.3
    • /
    • pp.348-355
    • /
    • 2000
  • The study was conducted to determine physicochemical parameters in various physical fractions (linter, hull, kernel, oil and meal) of cottonseed of different varieties (MNH 147, CIM 240, NIAB 78, FH 87, CIM 109, MNH 93, FH 682, GOHAR 87, SLS 1 and B 557). Average components of linter, hull, and kernel in different varieties of cotton were 12.21, 28.24 and 70.42%, respectively. Average percentage of meal and oil was 48.97 and 22.09% in seed, and 69.28 and 30.72% in kernel, respectively. Maximum percentage of meal was recovered from variety CIM 240 and lowest in variety CIM 109. Statistical analysls revealed variety differences (p<0.05) in seed and it's components. Average contents of crude protein, crude fiber and ash was 22.31, 17.74 and 4.27% in seed, 2.85, 56.50 and 2.61% in hull; 32.62, 3.45 and 4.01 % in kernel; 47.15, 5.00 and 5.78% in meal, respectively. Average contents of Ca, p, Mg, K, Na and Cl were 0.09, 0.22, 0.26, 0.65, 0.009 and 0.035% in seed; 0.12, 0.07, 0.09, 0.51, 0.020 and 0.034% in hull and 0.16, 0.59, 0.32, 1.01, 0.03 and 0.07% in meal of different varieties of cotton, respectively. Fe, Zn, Cu and Mn were 141.35, 24.55, 186.50 and 27.12 mg/kg in seed; 158.48, 2.06, 74.60, and 22.17 mg/kg in hulls; and 167.62, 20.30, 185.83 and 20.67 mg/kg in meal, respectively. Significant varietal differences were observed in proximate composition and mineral contents of cottonseeds and derived products. Cottonseeds and their products of varieties FH 87, CIM 109 and MNH 93 showed higher nutrient density while lower was observed in varieties CIM 240, SLS I and FH 682.

Factor Analysis of Soil and Water Quality Indicators in Different Agricultural Areas of the Han River Basins (한강수계 농업지대에서 토양과 수질 지표에 대한 요인 분석)

  • Jung, Yeong-Sang;Yang, Jae-E;Joo, Jin-Ho;Kim, Jeong-Je;Kim, Hyun-Jeong;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.4
    • /
    • pp.398-404
    • /
    • 1999
  • Factor analysis technique was employed to screen the principal indicators influencing soil and water qualities in the intensively cultivated areas of the Han River Basin. Soil chemical parameters were analyzed for the soil samples collected at intensive farming area in Pyungchang-Gun, and water quality monitoring data were obtained from the agricultural small catchments of Han River Basin during 1996 and 1997. Among the $11{\times}11$ cross correlation matrix, 29 correlations were significant out of 55 soil quality indicator pairs. The overall Kaiser's measure of sampling adequacy(KMS) value was acceptable with 0.60. Most indicators except iron were acceptable. Among soil indicators, the first factors showing high factor loadings were pH, Ca and Mg. The factor loading was the highest for Ca. The second factor could be characterized as phosphate and micronutrient. The third factor was organic matter and EC, and the fourth factor was potassium and Fe. Out of 190 water quality indicators, 86 correlations were significant. Overall KMS value was 0.74, but the KMS values for pH, TSS, Cd, Cu and Fe were lower than 50. The first factor of EC accounts 27.1 percents of the total variance, and showed high factor loadings with Na, Ca, $SO_4$, Mg, K, Cl, $NO_3$, and T-N. The second factor showed high loadings with Zn, Fe, Mn and Cd. The third to seventh factors could be characterized as $PO_4$, TSS, inorganic nitrogen, pH and T-P, and Cu factors, respectively. The factor score for EC was the highest in Kuri, followed by Chunchon, Dunnae and Daegwanryng. The factor score for heavy metals were the highest in the Daegwanryng. The results demonstrated that the factor analysis could be useful to select the most principal factor influencing soil and water qualities in the agricultural watershed.

  • PDF

Geochemical Characteristics of Stream Sediments and Waters around the Pungam Landfill in Gwangju City, Korea (광주광역시 풍암매립지 주변 하상퇴적물과 물의 지구화학적 특성)

  • Park, Cheon-Young;Shim, In-Hyun;Bae, Jong-Phill;Ahn, Kun-Sang
    • Journal of the Korean earth science society
    • /
    • v.24 no.4
    • /
    • pp.290-302
    • /
    • 2003
  • This study was carried out to evaluate geochemical properties for stream sediments, surrounding soils, sludge collected in the drainage pipe of leachate and waters (stream water, groundwater, leachate) around the Pungam Landfill in Gwangju city. The stream sediments don't show any systematic trend of contents from upstream to downstream. The most enriched major element in the stream sediments is Fe (up to 7.08wt.% in GJ-23). Though stream sediment GJ-23 and GJ-34 were enriched by some heavy metals (eg. As, Cu, Zn), they do not constitute serious problems for environment consideration. The concentration of Fe (35.lwt.%) and As (38ppm) are significantly high in the GJ-8, which is soil specimen adjacent to leachate reservoir. The sludge (GJ-7) shows very high concentrations of As, Mn, Cr, Pb. In particular, the Cr content is 45.6 ppm, which exceeds the permitted level. The leachate is characterized by high TDS (2210-2470mg/L) and high electric conductivity (468, 530ms/cm), and enriched in both cation (Na, K) and anion (HCO$_3$). The leachate(PK-3) had a relatively high concentration of Cl, and is plotted in Na-Cl type on the Piper's diagram. The NO$_3$-N of the groundwater and stream water exceeded the permitted levels for drinking water.

Corrosion Charateristics of PEO-treated Ti-6Al-4V Alloy in Solution Containing Si and Mg Ions

  • Park, Seon-Yeong;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.153-153
    • /
    • 2017
  • The application of the coating supports the mechanical characteristics of the implant, and various materials and coatings are currently being used in the implant in a way to accelerate adhesion. Especially, plasma electrolytic oxidation (PEO) coating has been proposed continually with good surface treatment of titanium alloys. Also, the PEO process can incorporate Ca and P ions on the titanium surface through variables varied factor. PEO process for bioactive surface has carried out in electrolytes containing Ca and P ions. Natural bone is composed of mineral elements such as Mg, Si, Zn, Sr, and Mn, etc. Especially, Mg and Si of these elements play role in bone formation and growth after clinical implantation of bio-implants. In this study, corrosion charateristics of PEO-treated Ti-6Al-4V alloy in solution containing Si and Mg ions has been investigated using several experimental techniques. The PEO-treated surfaces were identified by X-ray diffraction, using a diffractometer (XRD, Philips X' pert PRO, Netherlands) with Cu $K{\alpha}$ radiation. The morphology was observed by field-emission scanning electron microscopy (FE-SEM, Hitachi 4800, Japan) and energy-dispersive X-ray spectroscopy (EDX, Oxford ISIS 310, England). The potentiodynamic polarization and AC impedance tests for electrochemical degradations were carried out in 0.9% NaCl solution at similar body temperature using a potentiostat with a scan rate of 1.67mV/s and potential range from -1500mV to + 2000mV.

  • PDF

Use of hybrid materials in the trace determination of As(V) from aqueous solutions: An electrochemical study

  • Tiwari, Diwakar;Jamsheera, A.;Zirlianngura, Zirlianngura;Lee, Seung Mok
    • Environmental Engineering Research
    • /
    • v.22 no.2
    • /
    • pp.186-192
    • /
    • 2017
  • The carbon paste electrode (CPE) was modified with the pristine bentonite and hybrid material (HDTMA-modified bentonite). The modified-CPEs are then employed as working electrode in an electrochemical detection of As(V) from aqueous solutions using the cyclic voltammetric measurements. Cyclic voltammograms revealed that As(V) showed reversible behavior onto the working electrode. The hybrid material-modified carbon paste electrode showed significantly enhanced electrochemical signal which was then utilized in the low level detection of As(V). Moreover, the studies were conducted at neutral pH conditions. The electrochemical studies were conducted with scan rates (20 to 200 mV/s) to deduce the mechanism of redox processes involved at the electrode surface. The anodic current was linearly increased, increasing the concentration of As(V) from 5.0 to $35.0{\mu}g/g$ using the hybrid material-modified electrode. This provided fairly a good calibration line for As(V) detection. The presence of varied concentrations of As(III) in the determination of total arsenic was studied. The influence of several cations and anions viz., Cu(II), Mn(II), Zn(II), Pb(II), Cd(II), Fe(III), $Cl^-$, $NO_3{^-}$, $PO_4{^{3-}}$, EDTA and glycine in the detection of As(V) from aqueous solution was also studied. Further, in an attempt to simulate the real matrix analysis, the tap water sample was spiked with As(V) and subjected for As(V) detection using the modified-CPE.

A study on drainage characteristics and load amount evaluation by crop type in a hydroponic cultivation facility of horticultural complex (수경재배 시설원예단지 작물 유형별 배액 특성 및 부하량 평가 연구)

  • Jin, Yujeong;Kang, Taegyoung;Lim, Ryugab;Kim, Hyunwoo;Kang, Donghyeon;Park, Minjung;Son, Jinkwan
    • Journal of Wetlands Research
    • /
    • v.23 no.4
    • /
    • pp.352-363
    • /
    • 2021
  • The purpose of this study was to evaluate the load of nutrients contained in the drainage discharged from the facility horticultural complex and to use them for re-use of fluids and design for introduction of water treatment plants. Representative hydroponic cultivation crops were selected as tomato, paprika, cucumber, and strawberry, and the total number of samples analyzed for water quality was 80. As a result of the analysis, since various fertilizer components such as N, P, K+, Na+, Mg2+, Ca2+, Si4+, HCO3-, Cl-, S2-, Fe, Mn, Cu, Zn, Mo and B are contained at very high concentrations in the drainage, the need for water treatment was confirmed. Through statistical analysis, it was analyzed that the drainage concentration of strawberries was lower than that of tomatoes, paprika, and cucumbers. In the case of tomatoes, these essential ion concentrations are the highest, so it was confirmed that they are subject to valuable resources in terms of reuse of fertilizers. The load of N and P of the drainage discharged from the facility horticultural complex 1m2 was analyzed. For N, the daily processing capacity of 4.0 kg of tomatoes, 3.3 kg of paprika, 3.0 kg of cucumbers, and 1.5 kg of strawberries was calculated based on 1 ha. It was suggested that the P concentration needs a scale and capacity that can handle 0.5 kg of tomatoes, 0.6 kg of paprika, 0.4 kg of cucumber, and 0.2 kg of strawberries per day. Through this study, the amount of nitrogen and phosphorus contained in the drainage discharged from the greenhouse of each crop was evaluated to analyze the economy. In addition, it was expected to be used as basic data that can be used to calculate the treatment capacity to be reflected when introducing water treatment facilities in facility horticultural complexes for sustainable agriculture.

Production of Xylooligo-Saccharides and Purification of Extracellular Xylanase from Streptomyces chibaensis J-59 (방선균 Streptomyces chibaensis J-59 Xylanase의 정제 및 자일로 올리고당(Xylooligo-Saccharides)의 생산)

  • Joo, Gil-Jae;Rhee, In-Koo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.14
    • /
    • pp.111-122
    • /
    • 1996
  • S. chibaensis J-59 produced an extracellular xylanase in a CSL medium composed of 1.5% com steep liquor, 0.1% $MgSO_4{\cdot}7H_2O$, 0.012% $CoCl_2{\cdot}6H_2O$, and 0.15% glucose containing xylan. but it did not produce in the culture medium containing xylose. The production of enzyme reached to a maximum level (0.83 uints/ml) when bacteria were cultured in 2.5 l jar fermentor for 48hrs at $30^{\circ}C$ and pH 7.0. Furthermore, S. chibaensis J-59 produced an intracellular glucose isomerase in a medium containing xylan and/or xylose. Xylanase was purified 29-fold over the culture supernatants of S. chibaensis J-59 by ammonium sulfate fractionation, chromatography on DEAE-Sephadex A-50, and gel filtration on Sephadex G-200. The purified enzyme is a monomeric enzyme with a native molecular mass of 25 kDa and a subunit molecular mass of 25 kDa. The purified enzyme requires $Mg^{2+}$ for activity, $Ca^{2+}$, $Co^{2+}$ is not an inhibitor but inhibit by $Fe^{3+}$, $Hg^{2+}$, and $Cu^{2+}$, sodium dodecyl sulfate, N-bromosuccinide. Pattern of hydrolysis demonstrated that the xylanase was an endo-splitting enzyme able to break down birchwood xylan at random giving xylobiose, xylotriose and xylotetrose as the main end products.

  • PDF

Source Apportionment Study and Chemical Composition of PM10 and PM2.5 in the Industrial Complex of Busan City, Korea (SEM-EDX 분석법에 의한 부산 S공업단지의 PM10과 PM2.5의 화학적 조성 및 발생원 추정)

  • Kim, Yong-Seog;Choi, Kum-Chan;Suh, Jeong-Min
    • Journal of Environmental Science International
    • /
    • v.26 no.11
    • /
    • pp.1297-1306
    • /
    • 2017
  • This study identified physical characteristics and aerosol particle sources of $PM_{10}$ and $PM_{2.5}$ in the industrial complex of Busan Metropolitan City, Korea. Samples of $PM_{10}$, $PM_{2.5}$ and also soil, were collected in several areas during the year of 2012 to investigate elemental composition. A URG cyclone sampler was used for collection. The samples were collected according to each experimental condition, and the analysis method of SEM-EDX was used to determine the concentration of each metallic element. The comparative analysis indicated that their mass concentration ranged from 1% to 3%. The elements in the industrial region that were above 10% were Si, Al, Fe, and Ca. Those below 5% were Na, Mg, and S. The remaining elements (1% of total mass) consisted of elements such as Ni, Co, Br and Pb. Finally, a statistical tool was applied to the elemental results to identify each source for the industrial region. From a principal components analysis (SPSS, Ver 20.0) performed to analyze the possible sources of $PM_{10}$ in the industrial region, five main factors were determined. Factor 1 (Si, Al), which accounted for 15.8% of the total variance, was mostly affected by soil and dust from manufacturing facilities nearby, Factors 2 (Cu, Ni), 3 (Zn, Pb), and 4 (Mn, Fe), which also accounted for some of variance, were mainly related to iron, non-ferrous metals, and other industrial manufacturing sources. Also, five factors determined to access possible sources of $PM_{2.5}$, Factor 1 (Na, S), accounted for 13.5% of the total variance and was affected by sea-salt particles and fuel incineration sources, and Factors 2 (Ti, Mn), 3 (Pb, Cl), 4 (K, Al) also explained significant proportions of the variance. Theses factors mean that the $PM_{2.5}$ emission sources may be considered as sources of incineration, and metals, and non-ferrous manufacturing industries.

Janggunite, a New Mineral from the Janggun Mine, Bonghwa, Korea (경북(慶北) 봉화군(奉化郡) 장군광산산(將軍鑛山産) 신종광물(新種鑛物) 장군석(將軍石)에 대(對)한 광물학적(鑛物學的) 연구(硏究))

  • Kim, Soo Jin
    • Economic and Environmental Geology
    • /
    • v.8 no.3
    • /
    • pp.117-124
    • /
    • 1975
  • Wet chemical analysis (for $MnO_2$, MnO, and $H_2O$(+)) and electron microprobe analysis (for $Fe_2O_3$ and PbO) give $MnO_2$ 74.91, MnO 11.33, $Fe_2O_3$ (total Fe) 4.19, PbO 0.03, $H_2O$ (+) 9.46, sum 99.92%. 'Available oxygen determined by oxalate titration method is allotted to $MnO_2$ from total Mn, and the remaining Mn is calculated as MnO. Traces of Ba, Ca, Mg, K, Cu, Zn, and Al were found. Li and Na were not found. The existence of (OH) is verified from the infrared absorption spectra. The analysis corresponds to the formula $Mn^{4+}{_{4.85}}(Mn^{2+}{_{0.90}}Fe^{3+}{_{0.30}})_{1.20}O_{8.09}(OH)_{5.91}$, on the basis of O=14, 'or ideally $Mn^{4+}{_{5-x}}(Mn^{2+},Fe^{3+})_{1+x}O_{8}(OH)_{6}$ ($x{\approx}0.2$). X-ray single crystal study could not be made because of the distortion of single crystals. But the x-ray powder pattern is satisfactorily indexed by an orthorhombic cell with a 9.324, b 14.05, c $7.956{\AA}$., Z=4. The indexed powder diffraction lines are 9.34(s) (100), 7.09(s) (020), 4.62(m) (200, 121), 4.17(m) (130), 3.547(s) (112), 3.212(vw) (041), 3.101(s) (300), 2.597(w) (013), 2.469(m) (331), 2.214(vw)(420), 2.098(vw) (260), 2.014 (vw) (402), 1.863(w) (500), 1.664(w) (314), 1.554(vw) (600), 1.525(m) (601), 1.405(m) (0.10.0). DTA curve shows the endothermic peaks at $250-370^{\circ}C$ and $955^{\circ}C$. The former is due to the dehydration: and oxidation forming$(Mn,\;Fe)_2O_3$(cubic, a $9.417{\AA}$), and the latter is interpreted as the formation of a hausmannite-type oxide (tetragonal, a 5.76, c $9.51{\AA}$) from $(Mn,\;Fe)_2O_3$. Infrared absorption spectral curve shows Mn-O stretching vibrations at $515cm^{-1}$ and $545cm^{-1}$, O-H bending vibration at $1025cm^{-1}$ and O-H stretching vibration at $3225cm^{-1}$. Opaque. Reflectance 13-15%. Bireflectance distinct in air and strong in oil. Reflection pleochroism changes from whitish to light grey. Between crossed nicols, color changes from yellowish brown with bluish tint to grey in air and yellowish brown to grey through bluish brown in oil. No internal reflections. Etching reactions: HCl(conc.) and $H_2SO_4+H_2O_2$-grey tarnish; $SnCl_2$(sat.)-dark color; $HNO_3$(conc.)-grey color; $H_2O_2$-tarnish with effervescence. It is black in color. Luster dull. Cleavage one direction perfect. Streak brownish black to dark brown. H. (Mohs) 2-3, very fragile. Specific gravity 3.59(obs.), 3.57(calc.). It occurs as radiating groups of flakes, flower-like aggregates, colloform bands, dendritic or arborescent masses composed of fine grains in the cementation zone of the supergene manganese oxide deposits of the Janggun mine, Bonghwa-gun, southeastern Korea. Associated minerals are calcite, nsutite, todorokite, and some undetermined manganese dioxide minerals. The name is for the mine, the first locality. The mineral and name were approved before publication by the Commission on New Minerals and Mineral Names, I.M.A.

  • PDF

Size-resolved Source Apportionment of Ambient Particles by Positive Matrix Factorization at Gosan, Jeju Island during ACE-Asia (PMF 분석을 이용한 ACE-Asia 측정기간 중 제주 고산지역 입자상 물질의 입경별 발생원 추정)

  • Moon K.J.;Han, J.S.;Kong, B.J.;Jung, I.R.;Cliff Steven S.;Cahill Thomas A.;Perry Kelvin D.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.5
    • /
    • pp.590-603
    • /
    • 2006
  • Size-and time-resolved aerosol samples were collected using an eight-stage Davis rotating unit for monitoring (DRUM) sampler from 23 March to 29 April 2001 at Gosan, Jeju Island, Korea, which is one of the super sites of Asia-Pacific Regional Aerosol Characterization Experiment(ACE-Asia). These samples were analyzed using synchrotron X-ray fluorescence for 3-hr average concentrations of 19 elements including Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb, and Pb. The size-resolved data sets were then analyzed using the positive matrix factorization(PMF) technique to identify possible sources and estimate their contributions to particulate matter mass. PMF analysis uses the uncertainty of the measured data to provide an optimal weighting. Twelve sources were resolved in eight size ranges($0.09{\sim}12{\mu}m$) and included continental soil, local soil, sea salt, biomass/biofuel burning, coal combustion, oil combustion, municipal incineration, nonferrous metal source, ferrous metal source, gasoline vehicle, diesel vehicle, and volcanic emission. The PMF result of size-resolved source contributions showed that natural sources represented by local soil, sea salt, continental soil, and volcanic emission contributed about 79% to the predicted primary particulate matter(PM) mass in the coarse size range ($1.15{\sim}12{\mu}m$) while anthropogenic sources such as coal combustion and biomass/biofuel burning contributed about 58% in the fine size range($0.56{\sim}2.5{\mu}m$). The diesel vehicle source contributed mostly in ultra-fine size range($0.09{\sim}0.56{\mu}m$) and was responsible for about 56% of the primary PM mass.