• 제목/요약/키워드: ZnO nanowires

검색결과 149건 처리시간 0.027초

A review of zinc oxide photoanode films for dye-sensitized solar cells based on zinc oxide nanostructures

  • Tyona, M.D.;Osuji, R.U.;Ezema, F.I.
    • Advances in nano research
    • /
    • 제1권1호
    • /
    • pp.43-58
    • /
    • 2013
  • Zinc oxide (ZnO) is a unique semiconductor material that exhibits numerous useful properties for dye-sensitized solar cells (DSSCs) and other applications. Various thin-film growth techniques have been used to produce nanowires, nanorods, nanotubes, nanotips, nanosheets, nanobelts and terapods of ZnO. These unique nanostructures unambiguously demonstrate that ZnO probably has the richest family of nanostructures among all materials, both in structures and in properties. The nanostructures could have novel applications in solar cells, optoelectronics, sensors, transducers and biomedical sciences. This article reviews the various nanostructures of ZnO grown by various techniques and their application in DSSCs. The application of ZnO nanowires, nanorods in DSSCs became outstanding, providing a direct pathway to the anode for photo-generated electrons thereby suppressing carrier recombination. This is a novel characteristic which increases the efficiency of ZnO based dye-sensitized solar cells.

열증착법으로 합성된 ZnO 나노 구조체의 구조적 특성 (Structural characteristics of ZnO nanostructures synthesized by the thermal evaporation method)

  • 방신영;김우식;정준호;최봉근;심광보
    • 한국결정성장학회지
    • /
    • 제18권2호
    • /
    • pp.81-86
    • /
    • 2008
  • 열증착법(thermal evaporation method)에 의해 ZnO 나노선을 합성하였다. 나노선 합성조건에 따른 구조적 특성을 분석하여 그 합성 메카니즘을 확인하였다. ZnO 나노선 합성 시 기화 온도가 고온일수록 성장속도가 빠르고 $CO/CO_2$ 분압이 역전되는 1000$^{\circ}C$ 이상에서는 그 형태가 크게 변화하고, 성장온도 700$^{\circ}C$ 이상에서 Au 촉매가 그 기능을 하고 있음을 확인하였다. 성장된 ZnO 나노선은 380 nm에서의 blue emission을 나타냄을 확인하였다.

Selective Growth of Nanosphere Assisted Vertical Zinc Oxide Nanowires with Hydrothermal Method

  • Lee, Jin-Su;Nam, Sang-Hun;Yu, Jung-Hun;Yun, Sang-Ho;Boo, Jin-Hyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.252.2-252.2
    • /
    • 2013
  • ZnO nanostructures have a lot of interest for decades due to its varied applications such as light-emitting devices, power generators, solar cells, and sensing devices etc. To get the high performance of these devices, the factors of nanostructure geometry, spacing, and alignment are important. So, Patterning of vertically- aligned ZnO nanowires are currently attractive. However, many of ZnO nanowire or nanorod fabrication methods are needs high temperature, such vapor phase transport process, metal-organic chemical vapor deposition (MOCVD), metal-organic vapor phase epitaxy, thermal evaporation, pulse laser deposition and thermal chemical vapor deposition. While hydrothermal process has great advantages-low temperature (less than $100^{\circ}C$), simple steps, short time consuming, without catalyst, and relatively ease to control than as mentioned various methods. In this work, we investigate the dependence of ZnO nanowire alignment and morphology on si substrate using of nanosphere template with various precursor concentration and components via hydrothermal process. The brief experimental scheme is as follow. First synthesized ZnO seed solution was spun coated on to cleaned Si substrate, and then annealed $350^{\circ}C$ for 1h in the furnace. Second, 200nm sized close-packed nanospheres were formed on the seed layer-coated substrate by using of gas-liquid-solid interfacial self-assembly method and drying in vaccum desicator for about a day to enhance the adhesion between seed layer and nanospheres. After that, zinc oxide nanowires were synthesized using a low temperature hydrothermal method based on alkali solution. The specimens were immersed upside down in the autoclave bath to prevent some precipitates which formed and covered on the surface. The hydrothermal conditions such as growth temperature, growth time, solution concentration, and additives are variously performed to optimize the morphologies of nanowire. To characterize the crystal structure of seed layer and nanowires, morphology, and optical properties, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and photoluminescence (PL) studies were investigated.

  • PDF

On demand nanowire device decalcomania

  • Lee, Tae-Il;Choi, Ji-Hyuck;Moon, Kyung-Ju;Jeon, Joo-Hee;Myoung, Jae-Min
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.26.1-26.1
    • /
    • 2009
  • A simple route of external mechanical force is presented for enhancing the electrical properties of polymer nanocomposite consisted of nanowires. By dispersing ZnO nanowires in polymer solution and drop casting on substrates, nanocomposite transistors containing ZnO nanowires are successfully fabricated. Even though the ZnO nanowires density is properly controlled for device fabrication, as-cast device doesn't show any detectable currents, because nanowires are separated far from each other with the insulating polymer matrix intervening between them. Compared to the device pressed at 300 kPa, the device pressed at 600 kPa currents increased by 50times showing the linear behavior against drain voltage and exhibits promising electrical properties, which operates in the depletion mode with higher mobility and on-current. Such an improved device performance would be realized by the contacts improvement and the increase of the number of electrical path induced by external force. This approach provides a viable solution for serious contact resistance problem of nanocomposite materials and promises for future manufacturing of high-performance devices.

  • PDF

ZnO 나노와이어를 이용한 FET 소자 제작 및 특성 평가 (Fabrication and Characterization of FET Device Using ZnO Nanowires)

  • 김경원;오원석;장건익;박동원;이정오;김범수
    • 한국표면공학회지
    • /
    • 제41권1호
    • /
    • pp.12-15
    • /
    • 2008
  • The zinc oxide(ZnO) nanowires were deposited on Si(001) substrates by thermal chemical vapour deposition without any catalysts. SEM data suggested that the grown nanostructures were the well-aligned ZnO single crystals with preferential orientation. Back-gate ZnO nanowire field effect transistors(FET) were successfully fabricated using a photolithography process. The fabricated nanowire FET exhibits good contact between the ZnO nonowire and Au metal electrodes. Based on I-V characteristics it was found out that the ZnO nanowire revealed a characteristic of n-type field effect transistor. The drain current increases with increasing drain voltage, and the slopes of the $I_{ds}-V_{ds}$ curves are dependent on the gate voltage.

$Ga_2O_3$와 ZnO 나노물질의 CL특성 (Cathodoluminescence properties of $Ga_2O_3$ and ZnO nanomaterials)

  • 이종수;강명일;박일우;성만영;김상식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.97-98
    • /
    • 2002
  • $Ga_2O_3$ nanobelts were synthesized from mechanically ground GaN powders with a thermal annealing in a nitrogen atmosphere. The nanobelts are with the range of about $10{\sim}200nm$ width and $10{\sim}50nm$ thickness. Three different ZnO nanomaterials (nanobelts, nanorods, and nanowires) were synthesized at three different substrate temperatures from the thermal evaporation of ball-milled ZnO powders at $1380^{\circ}C$. In cathodoluminescence(CL), the peak energy of near band-edge(NBE) emission was determined for nanobelts, nanorods, and nanowires.

  • PDF

Optically transparent and electrically conductive indium-tin-oxide nanowires for transparent photodetectors

  • Kim, Hyunki;Park, Wanghee;Ban, Dongkyun;Kim, Hong-Sik;Patel, Malkeshkumar;Yadav, Pankaj;Kim, Joondong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.390.2-390.2
    • /
    • 2016
  • Single crystalline indium-tin-oxide (ITO) nanowires (NWs) were grown by sputtering method. A thin Ni film of 5 nm was coated before ITO sputtering. Thermal treatment forms Ni nanoparticles, which act as templates to diffuse Ni into the sputtered ITO layer to grow single crystalline ITO NWs. Highly optical transparent photoelectric devices were realized by using a transparent metal-oxide semiconductor heterojunction by combining of p-type NiO and n-type ZnO. A functional template of ITO nanowires was applied to this transparent heterojunction device to enlarge the light-reactive surface. The ITO NWs/n-ZnO/p-NiO heterojunction device provided a significant high rectification ratio of 275 with a considerably low reverse saturation current of 0.2 nA. The optical transparency was about 80% for visible wavelengths, however showed an excellent blocking UV light. The nanostructured transparent heterojunction devices were applied for UV photodetectors to show ultra fast photoresponses with a rise time of 8.3 mS and a fall time of 20 ms, respectively. We suggest this transparent and super-performing UV responser can practically applied in transparent electronics and smart window applications.

  • PDF