• 제목/요약/키워드: ZnO film

검색결과 1,492건 처리시간 0.027초

Zn 타겟을 이용한 ZnO 박막트랜지스터의 스퍼터링 성장 (Sputtering Growth of ZnO Thin-Film Transistor Using Zn Target)

  • 우맹;조중열
    • 반도체디스플레이기술학회지
    • /
    • 제13권3호
    • /
    • pp.35-38
    • /
    • 2014
  • Flat panel displays fabricated on glass substrate use amorphous Si for data processing circuit. Recent progress in display technology requires a new material to replace the amorphous Si, and ZnO is a good candidate. ZnO is a wide bandgap (3.3 eV) semiconductor with high mobility and good optical transparency. ZnO is usually grown by sputtering using ZnO ceramic target. However, ceramic target is more expensive than metal target, and making large area target is very difficult. In this work we studied characteristics of ZnO thin-film transistor grown by rf sputtering using Zn metal target and $CO_2$. ZnO film was grown at $450^{\circ}C$ substrate temperature, with -70 V substrate bias voltage applied. By using these methods, our ZnO TFT showed $5.2cm^2/Vsec$ mobility, $3{\times}10^6$ on-off ratio, and -7 V threshold voltage.

Properites of transparent conductive ZnO:Al film prepared by co-sputtering

  • Ma, Hong-Chan;Lee, Hee-Young
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.106-106
    • /
    • 2009
  • Al-doped ZnO (AZO) thin films were grown on glass substrates by co-sputtering at room temperature. We made ZnO and Al target and ZnO:Al film is deposited with sputter which has two RF gun source. The Al content was controlled by varying Al RF power and effect of Al contents on the properties of ZnO:Al film was investigated. Crystallinity and orientation of the ZnO:Al films were investigated by X-ray diffraction (XRD), surface morphology of the ZnO:Al films was observed by atomic force microscope. Electrical properties of the ZnO:Al films were measured at room temperature by van der Pauw method and hall measurement. Optrical properties of ZnO:Al films were measured by UV-vis-NIR spectrometer.

  • PDF

열처리에 따른 MWCNT/ZnO 복합체 필름 가스센서의 NOX 가스 검출 특성 (The Detection Characterization of NOX Gas Using the MWCNT/ZnO Composite Film Gas Sensors by Heat Treatment)

  • 김현수;장경욱
    • 한국전기전자재료학회논문지
    • /
    • 제31권7호
    • /
    • pp.521-526
    • /
    • 2018
  • In particular, gas sensors require characteristics such as high speed, sensitivity, and selectivity. In this study, we fabricated a $NO_X$ gas sensor by using a multi-walled carbon nanotube (MWCNT)/zinc oxide (ZnO) composite film. The fabricated MWCNT/ZnO gas sensor was then treated by a $450^{\circ}C$ temperature process to increase its detection sensitivity for NOx gas. We compared the detection characteristics of a ZnO film gas sensor, MWCNT film gas sensor, and the MWCNT/ZnO composited film gas sensor with and without the heat-treatment process. The fabricated gas sensors were used to detect $NO_X$ gas at different concentrations. The gas sensor absorbed $NO_X$ gas molecules, exhibiting increased sensitivity. The sensitivity of the gas sensor was increased by increasing the gas concentration. Additionally, while changing the temperature inside the chamber for the MWCNT/ZnO composite film gas sensor, we obtained its sensitivity for detecting $NO_X$ gas. Compared with ZnO, the MWCNT film gas sensor is excellent for detecting $NO_X$ gas. From the experimental results, we confirmed the enhanced gas sensor sensing mechanism. The increased effect by electronic interaction between the MWCNT and ZnO films contributes to the improved sensor performance.

ZnO 나노선과 HgTe 나노입자 박막을 이용한 pn 접합 다이오드 (A pn diode constructed with an n-type ZnO nanowire and a p-type HgTe nanoparticle thin film)

  • 성호준;조경아;김상식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.121-121
    • /
    • 2008
  • We propose a novel nanomaterial-based pn diode which constructed with an n-type ZnO nanowire (NW) and a p-type HgTe nanoparticle (NP) thin film. The photo current characteristics of a ZnO NW, a HgTe NP thin film and pn diode constructed with a ZnO NW and a HgTe NP thin film were investigated under illumination of the 325 nm and 633 nm wavelength light. The conductivities of a ZnO NW exposed to the 325 nm and 633 nm wavelength light increased, while the photocurrents taken from the HgTe NP thin film was very close to the dark currents. Moreover, The pn diode exhibited the rectifying characteristics of the dark current and of the photocurrent excited by the 633 nm wavelength light. In contrast, the ohmic characteristics for the photocurrent were observed due to the junction barrier lowering in the conduction band of the ZnO nanowire under the illumination of the 325 nm wavelength light.

  • PDF

펄스레이저 증착법에 의해 성장된 ZnO 박막의 특성 관찰 (Investigating of the Properties of ZnO Film Synthesized by Pulsed Laser Deposition)

  • 최재완;지현진;정창욱;이보화;김규태
    • 한국전기전자재료학회논문지
    • /
    • 제24권2호
    • /
    • pp.108-111
    • /
    • 2011
  • The semiconducting material of ZnO in II-VI group was well known as its good application for photo electronics, chemical sensors and field effect transistors due to the remarkable optical properties with wide energy band gap and great ionic reactivities. Up to now the growth of a good quality of ZnO film has been issued for better performances. Even though there were many deposition methods for making ZnO films, pulse laser deposition methods have been preferred for high crystalline films. In this report, the ZnO film was also created by pulsed laser deposition technique which also showed high crystalinity. By controlling several factors when deposited, it was investigated that the optimal condition for ZnO film formation. Mainly, oxygen partial pressures and growth temperatures were changed when ZnO films were synthesized and followed the characterization by HRXRD and AFM.

RF 마그네트론 스퍼터링법으로 증착한 ZnO 박막의 증착온도에 따른 구조 및 전기적 특성 (Dependences of Various Substrate Temperature on the Structural and Electrical Properties of ZnO Thin Films deposited by RF Magnetron Sputtering)

  • 오수영;김응권;이태용;강현일;이종환;송준태
    • 한국전기전자재료학회논문지
    • /
    • 제20권11호
    • /
    • pp.965-968
    • /
    • 2007
  • In this study we investigated the variation of the substrate temperatures using RF sputtering to identify the effect on the structure and electrical properties by c-axis orientation of ZnO thin film. ZnO thin films were prepared on Al/Si substrate. In our experimental results, ZnO thin film at $300^{\circ}C$ was well grown with (002) peak of ZnO thin film, the thin film showed the high resistivity with the value of $5.9{\times}10^7\;{\Omega}cm$ and the roughness with 27.06 nm. As increased the substrate temperatures, the grain size of ZnO thin films was increased. From these results, we could confirm the suitable substrate temperature of ZnO thin films for FBAR(film bulk acoustic resonator).

보조씨드층을 이용한 ZnO 압전박막의 우선배향성에 관한 연구 (A Study on Preferred Orientation of ZnO Piezoelectric Thin Film Using Helped Seed Layer)

  • 박인철;김홍배
    • 한국진공학회지
    • /
    • 제15권6호
    • /
    • pp.619-623
    • /
    • 2006
  • FBAR(Film Bulk Acoustic Resonator) 소자의 공진특성을 결정하는 가장 중요한 요소는 압전막의 압전성을 들 수 있다. FBAR 압전막으로 유력한 ZnO 압전박막은 (002)면 c-축 우선배향성(preferred orientation)의 정도에 따라서 압전성이 결정된다. 그러므로 ZnO 박막의 우선배향성에 관한 연구는 많은 연구자들의 관심사가 되어왔다. 본 논문에서는 ZnO 보조씨드충(helped seed layer)을 이용하여 ZnO 압전박막의 우선배향성에 대하여 조사하였으며, rocking curve의 표준편차$(\sigma)$ 값이 $1.15^{\circ}$인 주상형 결정립을 가진 c-축 ZnO 압전박막이 우수한 압전특성을 나타내는 것을 확인하였다.

전사 공정을 이용한 산화막 정렬 패턴 제작과 액정 배향 특성 연구 (Parallel pattern fabrication on metal oxide film using transferring process for liquid crystal alignment)

  • 오병윤
    • 전기전자학회논문지
    • /
    • 제23권2호
    • /
    • pp.594-598
    • /
    • 2019
  • HfZnO 박막 위 패턴 전사 기법을 이용하여 기존의 러빙법을 대체하는 배향 공정에 대하여 연구하였다. 정렬 패턴은 레이저 간섭 리소그래피를 이용하여 실리콘 웨이퍼 위에 제작하였다. 졸겔 공정을 이용하여 HfZnO 용액을 제작하였고, 유리기판 위에 스핀코팅하였다. 미리 제작한 정렬패턴을 스핀코팅된 HfZnO 위에 올려놓고, $100^{\circ}C$에서 30분간 소성하였다. HfZnO 박막에 평행한 그루브가 형성되었음을 atomic force microscopy 와 scanning electron microscopy로부터 확인할 수 있었다. HfZnO 박막을 이용하여 액정 셀을 제작하였으며, POM 분석으로부터 액정이 균일하게 정렬되었음을 확인할 수 있었다. 액정은 $0.25^{\circ}$의 프리틸트 각을 가졌으며, 수평배향 특성을 보여주었다. 액정 분자는 평행한 그루브에 의한 HfZnO 박막 표면 이방성에 의하여 균일하게 정렬되었음을 확인할 수 있었다.

Preparation of Intrinsic ZnO Films at Low Temperature Using Oxidation of ZnS Precursor and Characterizion of the Films

  • Park, Do Hyung;Cho, Yang Hwi;Shin, Dong Hyeop;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • 제1권2호
    • /
    • pp.115-121
    • /
    • 2013
  • ZnO film has been used for CIGS solar cells as a buffer layer as itself or by doping Mg and Sn; ZnO film also has been used as a transparent conducting layer by doping Al or B for solar cells. Since ZnO itself is a host material for many applications it is necessary to understand the electrical and optical properties of ZnO film itself with various preparation conditions. We prepared ZnO films by converting ZnS precursor into ZnO film by thermal annealing. ZnO film was formed at low temperature as low as $500^{\circ}C$ by annealing a ZnS precursor layer in air. In the air annealing, the electrical resistivity decreased monotonically with increasing annealing temperature; the intensity of the green photoluminescence at 505 nm increased up to $750^{\circ}C$ annealing. The electrical resistivity further decreased and the intensity of green emission also increased in reducing atmospheres. The results suggest that deep-level defects originated by oxygen vacancy enhanced green emission, which reduce light transmittance and enhance the recombination of electrons in conduction band and holes in valence. More oxidizing environment is necessary to obtain defect-free ZnO film for higher transparency.

라디오주파수 분말 스퍼터링 방법으로 성장시킨 주석을 도핑한 산화아연 박막의 열처리 (Annealing of Sn Doped ZnO Thin Films Grown by Radio Frequency Powder Sputtering)

  • 이하람;정병언;양명훈;이종관;최영빈;강현철
    • 열처리공학회지
    • /
    • 제31권3호
    • /
    • pp.111-119
    • /
    • 2018
  • We report the post-annealing effect of Sn doped ZnO (ZnO:Sn) thin film grown on sapphire (001) substrate using radio-frequency powder sputtering method. During thermal annealing in a vacuum atmosphere, the ZnO:Sn thin film is transformed into a porous thin film. Based on X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray analyses, a possible mechanism for the production of pores is presented. Sn atoms segregate to form clusters that act as catalysts to dissociate Zn-O bonds. The Zn and O atoms subsequently vaporize, leading to the formation of pores in the ZnO:Sn thin film. We also found that Sn clusters were oxidized to form SnO or $SnO_2$ phases.