DOI QR코드

DOI QR Code

Investigating of the Properties of ZnO Film Synthesized by Pulsed Laser Deposition

펄스레이저 증착법에 의해 성장된 ZnO 박막의 특성 관찰

  • Choi, Jae-wan (School of Electrical Engineering, Korea University) ;
  • Ji, Hyun-jin (School of Electrical Engineering, Korea University) ;
  • Jung, Chang-Uk (Department of Physics, Hanguk University of Foreign Studies) ;
  • Lee, Bo-Hwa (Department of Physics, Hanguk University of Foreign Studies) ;
  • Kim, Gyu-Tae (School of Electrical Engineering, Korea University)
  • 최재완 (고려대학교 전기전자공학부 나노소자연구실) ;
  • 지현진 (고려대학교 전기전자공학부 나노소자연구실) ;
  • 정창욱 (한국외국어대학교 전자물리학과) ;
  • 이보화 (한국외국어대학교 전자물리학과) ;
  • 김규태 (고려대학교 전기전자공학부 나노소자연구실)
  • Received : 2010.12.16
  • Accepted : 2011.01.14
  • Published : 2011.02.01

Abstract

The semiconducting material of ZnO in II-VI group was well known as its good application for photo electronics, chemical sensors and field effect transistors due to the remarkable optical properties with wide energy band gap and great ionic reactivities. Up to now the growth of a good quality of ZnO film has been issued for better performances. Even though there were many deposition methods for making ZnO films, pulse laser deposition methods have been preferred for high crystalline films. In this report, the ZnO film was also created by pulsed laser deposition technique which also showed high crystalinity. By controlling several factors when deposited, it was investigated that the optimal condition for ZnO film formation. Mainly, oxygen partial pressures and growth temperatures were changed when ZnO films were synthesized and followed the characterization by HRXRD and AFM.

Keywords

References

  1. B.J. Jin, S.H. Bae, S.Y. Lee, S. Im, Mat. Sci. Eng. B. 71, 301 (2000). https://doi.org/10.1016/S0921-5107(99)00395-5
  2. X. W. Sun, H. S. Kwok, J. Appl. Phys. 86, 408 (1999). https://doi.org/10.1063/1.370744
  3. Z. L. Wang, J. Phys-Condens. Mat. 16, 829 (2004).
  4. B.J. Jin, S. Im, Thin Solid Films. 366, 107 (2000). https://doi.org/10.1016/S0040-6090(00)00746-X
  5. Y. Zhu, M. Ikeda, Y. Murakami, A. Tsukazaki, T. Fukumura, M. Kawasaki, Jpn. J. Appl. Phys. 46, 1000 (2007). https://doi.org/10.1143/JJAP.46.L1000
  6. R. D. Vispute, V. Talyansky, Z. Trajanovic, S. Choopun, M. Downes, R. P. Sharma, T. Venkatesan, M. C. Woods, R. T. Lareau, K. A. Jones, A. A. Iliadis, Appl. Phys. Lett. 70, 2735 (1997). https://doi.org/10.1063/1.119006
  7. E. M. Kaidashev, M. Lorenz, H. von Wenckstern, A. Rahm, H.-C. Semmelhack, K.-H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth, M. Grundmann, Appl. Phys. Lett. 82, 3901 (2003). https://doi.org/10.1063/1.1578694
  8. J. M. Myoung, W. H. Yoon, D. H. Lee, I. Yun, S. H. Bae, S. Y. Lee, Jpn. J. Appl. Phys. 41, 28 (2002). https://doi.org/10.1143/JJAP.41.28
  9. C. Liu, S. H. Chang, T. W. Noh, J.-H. Song, J. Xie, Phys. Status. Solidi. B. 244, 1528 (2007). https://doi.org/10.1002/pssb.200675127
  10. C. Liu, S. H. Chang, T. W. Noh, M. Abouzaid, P. Ruterana, H. H. Lee, D.-W. Kim, J.-S. Chung, Appl. Phys. Lett. 90 (2007).