DOI QR코드

DOI QR Code

Annealing of Sn Doped ZnO Thin Films Grown by Radio Frequency Powder Sputtering

라디오주파수 분말 스퍼터링 방법으로 성장시킨 주석을 도핑한 산화아연 박막의 열처리

  • Lee, Haram (Department of Materials Science and Engineering, Chosun University) ;
  • Jeong, Byeong Eon (Department of Materials Science and Engineering, Chosun University) ;
  • Yang, Myeong Hun (Department of Materials Science and Engineering, Chosun University) ;
  • Lee, Jong Kwan (Department of Materials Science and Engineering, Chosun University) ;
  • Choi, Young Bin (Department of Materials Science and Engineering, Chosun University) ;
  • Kang, Hyon Chol (Department of Materials Science and Engineering, Chosun University)
  • 이하람 (조선대학교 공과대학 재료공학과) ;
  • 정병언 (조선대학교 공과대학 재료공학과) ;
  • 양명훈 (조선대학교 공과대학 재료공학과) ;
  • 이종관 (조선대학교 공과대학 재료공학과) ;
  • 최영빈 (조선대학교 공과대학 재료공학과) ;
  • 강현철 (조선대학교 공과대학 재료공학과)
  • Received : 2018.04.20
  • Accepted : 2018.05.04
  • Published : 2018.05.30

Abstract

We report the post-annealing effect of Sn doped ZnO (ZnO:Sn) thin film grown on sapphire (001) substrate using radio-frequency powder sputtering method. During thermal annealing in a vacuum atmosphere, the ZnO:Sn thin film is transformed into a porous thin film. Based on X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray analyses, a possible mechanism for the production of pores is presented. Sn atoms segregate to form clusters that act as catalysts to dissociate Zn-O bonds. The Zn and O atoms subsequently vaporize, leading to the formation of pores in the ZnO:Sn thin film. We also found that Sn clusters were oxidized to form SnO or $SnO_2$ phases.

Keywords

References

  1. D. C. Look, B. Claflin, Ya. I. Alivov and S. J. Park : Phys. Status Solidi A-Appl. Mat., 201 (2004) 2203. https://doi.org/10.1002/pssa.200404803
  2. U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho and H. Morkoc : J. Appl. Phys., 98 (2005)141301.
  3. J. H. He, P. H. Chang, C. Y. Chen and K. T. Tsai : Nanotechnology, 20 (2009) 135701. https://doi.org/10.1088/0957-4484/20/13/135701
  4. J. Zhou, Y. Gu, Y. Hu, W. Mai, P.-H. Yeh, G. Bao, A. K. Sood, D. L. Polla and Z. L. Wang : Appl. Phys. Lett., 94 (2009) 191103. https://doi.org/10.1063/1.3133358
  5. K. Ramanathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward and A. Duda : Prog. Photovoltaics, 11 (2003) 225. https://doi.org/10.1002/pip.494
  6. B. Hussain, A. Ebong and I. Ferguson : Sol. Energy Mater. Sol. Cells, 139 (2015) 95. https://doi.org/10.1016/j.solmat.2015.03.017
  7. Y. -Y. Lin, C. -C. Hsu, M. -H. Tseng, J. -J. Shyue and F. -Y. Tsai : ACS Appl. Mater. Interfaces, 7 (2015) 22610. https://doi.org/10.1021/acsami.5b07278
  8. C. W. Shih and A. Chin : Sci. Rep., 7 (2017) 1147. https://doi.org/10.1038/s41598-017-01231-3
  9. T. Pauporte, D. Lincot, B. Viana and F. Pelle : Appl. Phys. Lett., 89 (2006) 233112. https://doi.org/10.1063/1.2402223
  10. M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber and P. Yang : Adv. Mater., 13 (2001) 113. https://doi.org/10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-H
  11. S. J. Kim and H. C. Kang : J. Korean Phys. Soc., 69 (2016) 778. https://doi.org/10.3938/jkps.69.778
  12. X. Wang, Y. Ding, Z. Li, J. Song and Z. L. Wang : J. Phys. Chem. C, 113 (2009) 1791. https://doi.org/10.1021/jp809358m
  13. M. Laurenti and V. Cauda : Coatings, 8 (2018) 67. https://doi.org/10.3390/coatings8020067
  14. X. Wang, J. Zhou, J. Song, J. Liu, N. Xu and Z. L. Wang : Nano Lett. 6 (2006) 2768. https://doi.org/10.1021/nl061802g
  15. S. N. Cha, J. E. Jang, Y. Choi, G. A. J. Amaratunga, G. W. Ho, M. E. Welland, D. G. Hasko, D.-J. Kang and J. M. Kim : Appl. Phys. Lett., 89 (2006) 263102. https://doi.org/10.1063/1.2416249
  16. P. -C. Chang, Z. Fan, D. Wang, W. -Y. Tseng, W. -A. Chiou, J. Hong and J. G. Lu : Chem. Mat., 16 (2004) 5133. https://doi.org/10.1021/cm049182c
  17. J. H. Kim, M. S. Lee and H. C. Kang : J. Korean Phys. Soc., 66 (2015) 229. https://doi.org/10.3938/jkps.66.229
  18. J. -S. Lee, M. -I. Kang, S. Kim, M. -S. Lee and Y. -K. Lee : J. Cryst. Growth, 249 (2003) 201. https://doi.org/10.1016/S0022-0248(02)02091-2
  19. W. Lee, M. -C. Jeong and J. -M. Myoung : Acta Mater., 52 (2004) 3949. https://doi.org/10.1016/j.actamat.2004.05.010
  20. G. S. Wu, T. Xie, X. Y. Yuan, Y. Li, L. Yang, Y. H. Xiao and L. D. Zhang : Solid State Commun., 134 (2005) 485. https://doi.org/10.1016/j.ssc.2005.02.015
  21. A. Kolodziejczak-Radzimska and T. Jesionowski : Materials, 7 (2014) 2833. https://doi.org/10.3390/ma7042833
  22. Z. Liu, Z. Jin, W. Li and X. Liu : J. Sol-Gel Sci. Technol., 40 (2006) 25. https://doi.org/10.1007/s10971-006-8421-8
  23. Z. Liu, Z. Jin, W. Li and J. Qiu : Mater. Lett., 59 (2005) 3620. https://doi.org/10.1016/j.matlet.2005.06.064
  24. Y. W. Sun, J. Gospodyn, P. Kursa, J. Sit, R. G. DeCorby and Y. Y. Tsui : Appl. Surf. Sci., 248 (2005) 392. https://doi.org/10.1016/j.apsusc.2005.03.064
  25. F. K. Allah, S. Y. Abe, C. M. Nunez, A. Khelil, L. Cattin, M. Morsli, J. C. Bernede, A. Bougrine, M. A. del Valle and F. R. Diaz : Appl. Surf. Sci., 253 (2007) 9241. https://doi.org/10.1016/j.apsusc.2007.05.055
  26. B. Pal and M. Sharon : Mater. Chem. Phys., 76 (2002) 82. https://doi.org/10.1016/S0254-0584(01)00514-4
  27. D. -G. Yoo, S. -H. Nam, M. H. Ki, S. H. Jeong, H. -G. Jee, H. J. Lee, N. -E. Lee, B. Y. Hong, Y. J. Kim, D. Jung and J. -H. Boo : Surf. Coat. Technol., 202 (2008) 5476. https://doi.org/10.1016/j.surfcoat.2008.06.064
  28. M. Laurenti, G. Canavese, S. Stassi, M. Fontana, M. Castellino, C. F. Pirri and V. Cauda : RSC Adv., 6 (2016) 76996. https://doi.org/10.1039/C6RA17319E
  29. S. H. Jeong, J. W. Lee, S. B. Lee and J. H. Boo : Thin Solid Films, 435 (2003) 78. https://doi.org/10.1016/S0040-6090(03)00376-6
  30. S. H. Seo and H. C. Kang : Thin Solid Films, 518 (2010) 5164. https://doi.org/10.1016/j.tsf.2010.03.032
  31. S. Y. Lee. K. H. Choi and H. C. Kang : Mater. Lett., 176 (2016) 213. https://doi.org/10.1016/j.matlet.2016.04.116
  32. H. R. Lee and H. C. Kang : to be published (2018).
  33. H. C. Kang, S. H. Seo and D. Y. Noh : J. Mater. Res., 16 (2001) 1814. https://doi.org/10.1557/JMR.2001.0250
  34. W. K. Choi, H. Sung, K. H. Kim, J. S. Cho, S. C. Choi, H. -J. Jung, S. K. Koh, C. M. Lee and K. Jeong : J. Mater. Sci. Lett., 16 (1997) 1551. https://doi.org/10.1023/A:1018547813759
  35. N. Chiodini, F. Meinardi, F. Morazzoni, J. Padovani, A. Paleari, R. Scotti and G. Spinolo : J. Mater. Chem., 11 (2001) 926. https://doi.org/10.1039/b006999j
  36. S. Zhang, P. Kang and T. J. Meyer : J. Am. Chem. Soc., 136 (2014) 1734. https://doi.org/10.1021/ja4113885
  37. K. J. Chen, F. Y. Hung, Y. Ti. Chen, S. J. Chang and Z. S. Hu : Mater. Trans., 51 (2010)1340. https://doi.org/10.2320/matertrans.M2009378
  38. Z. R. Dai, Z. W. Pan and Z. L. Wang : J. Am. Chem. Soc., 124 (2002) 8673. https://doi.org/10.1021/ja026262d