• Title/Summary/Keyword: ZnO Thick Film

Search Result 100, Processing Time 0.032 seconds

Gas sensing characteristics of Co3O4 thick films with metal oxides (금속산화물을 첨가한 Co3O4 후막의 가스 감지특성)

  • Jo, Chang-Yong;Park, Ki-Cheol;Kim, Jeong-Gyoo
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.54-62
    • /
    • 2009
  • ${Co_3}{O_4}$ and ${Co_3}{O_4}$-based thick films with additives such as ${Co_3}{O_4}-{Fe_2}{O_3}$(5 wt.%), ${Co_3}{O_4}-{SnO_2}$ (5 wt.%), ${Co_3}{O_4}-{WO_3}$(5 wt.%) and ${Co_3}{O_4}$-ZnO(5 wt.%) were fabricated by screen printing method on alumina substrates. Their structural properties were examined by XRD and SEM. The sensitivities to iso-${C_4}H_{10}$, $CH_4$, CO, $NH_3$ and NO gases were investigated with the thick films heat treated at $400^{\circ}C$, $500^{\circ}C$ and $600^{\circ}C$. From the gas sensing properties of the films, the films showed p-type semiconductor behaviors. ${Co_3}{O_4}-{SnO_2}$(5 wt.%) thick film heat treated at $600^{\circ}C$ showed higher sensitivity to i-${C_4}H_{10}$ and CO gases than other thick-films. ${Co_3}{O_4}-{SnO_2}$(5 wt.%) thick film heat treated at $600^{\circ}C$ showed the sensitivity of 170 % to 3000 ppm iso-${C_4}H_{10}$ gas and 100 % to 100 ppm CO gas at the working temperature of $250^{\circ}C$. The response time to i-${C_4}H_{10}$ and CO gases showed rise time of about 10 seconds and fall time of about $3{\sim}4$ minutes. The selectivity to i-${C_4}H_{10}$ and CO gases was enhanced in the ${Co_3}{O_4}-{SnO_2}$(5 wt.%) thick film.

A Study on Glass/Mo/ZnO/Glass Thin-film-heaters for Water Heating (수중 발열을 위한 Glass/Mo/ZnO/Glass 구조의 박막형 발열체 연구)

  • Kim, Jiwoo;Choi, Dooho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.1
    • /
    • pp.43-47
    • /
    • 2022
  • In this study, we demonstrated an eco-friendly thin-metallic-film-based heater which can be operated in water. Based on the materials stability, Mo was selected as the heating element to secure long-term stability. Using a magnetron sputtering, 40 nm-thick Mo layers were deposited onto a glass substrate, followed by the deposition of 60-nm-thick ZnO layer to prevent oxidation during the heater fabrication process. Then, PVB (Polyvinyl Butyral) was applied on top of ZnO layer and an additional glass substrate was placed, which were heated at 150℃ for 2 hr. The PVB was cured with strong adhesion by the processing condition. We operated the Glass/Mo/ZnO/Glass heater in water, and it was shown that the water temperature reached 50℃ within 2 minutes, with a minimal resistance change of the heater. Finally, the heaters exhibit a semi-transparency, and this aesthetic advantage is expected to contribute to the added value of the heater.

ZnO films grown on GaN/sapphire substrates by pulsed laser deposition

  • Suh, Joo-Young;Song, Hoo-Young;Shin, Myoung-Jun;Park, Young-Jin;Kim, Eun-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.207-207
    • /
    • 2010
  • Both ZnO and GaN have excellent physical properties in optoelectronic devices such as blue light emitting diode (LED), blue laser diode (LD), and ultra-violet (UV) detector. The ZnO/GaN heterostructure, which has a potential to achieve the cost efficient LED technology, has been fabricated by using radio frequency (RF) sputtering, pyrolysis, metal organic chemical vapor deposition (MOCVD), direct current (DC) arc plasmatron, and pulsed laser deposition (PLD) methods. Among them, the PLD system has a benefit to control the composition ratio of the grown film from the mixture target. A 500-nm-thick ZnO film was grown by PLD technique on c-plane GaN/sapphire substrates. The post annealing process was executed at some varied temperature between from $300^{\circ}C$ to $900^{\circ}C$. The morphology and crystal structural properties obtained by using atomic force microscope (AFM) and x-ray diffraction (XRD) showed that the crystal quality of ZnO thin films can be improved as increasing the annealing temperature. We will discuss the post-treatment effect on film quality (uniformity and reliability) of ZnO/GaN heterostructures.

  • PDF

Effect of a ZnO Buffer Layer on the Structural, Optical and Electrical Properties of TIO/ZnO Bi-layered Films

  • Choe, Su-Hyeon;Park, Yun-Je;Choi, Jin-Young;Kim, Daeil
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.6
    • /
    • pp.289-292
    • /
    • 2019
  • Transparent and conducting titanium doped indium oxide (TIO) thin films were deposited by RF magnetron sputtering on zinc oxide (ZnO)-coated glass substrates to investigate the effect of the ZnO buffer layer on optical and electrical properties of TIO/ZnO bi-layered films. TIO 90 nm / ZnO 10 nm films having a lower resistivity (3.09×10-3 Ωcm) and a higher visible transmittance (80.3%) than other TIO/ZnO films were prepared in this study. Figure of merit results indicate that a 10 nm thick ZnO thin film is an effective buffer layer that enhances optical transmittance and electrical conductivity of TIO films without intentional substrate heating or post-deposition annealing.

Impedance Matching of Electrically Small Antenna with Ni-Zn Ferrite Film

  • Lee, Jaejin;Hong, Yang-Ki;Lee, Woncheol;Park, Jihoon
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.428-431
    • /
    • 2013
  • We demonstrate that a partial loading of $Ni_{0.5}Zn_{0.5}Fe_2O_4$ (Ni-Zn ferrite) film remarkably improves impedance matching of electrically small $Ba_3Co_2Fe_{24}O_{41}$ ($Co_2Z$) hexaferrite antenna. A 3 ${\mu}m$ thick Ni-Zn ferrite film was deposited on a silicon wafer by the electrophoresis deposition process and post-annealed at $400^{\circ}C$. The fabricated Ni-Zn ferrite film has saturation magnetization of $268emu/cm^3$ and coercivity of 89 Oe. A partial loading of the Ni-Zn ferrite film on the $Co_2Z$ hexaferrite helical antenna increases antenna return loss to 24.7 dB from 9.0 dB of the $Co_2Z$ antenna. Experimental results show that impedance matching and maximum input power transmission to the antenna without additional matching elements can be realized, while keeping almost the same size as the $Co_2Z$ antenna size.

Wet Etching Behaviors of Transparent Conducting Ga-Doped Zinc Oxide Thin Film by Organic Acid Solutions

  • Lee, Dong-Kyoon;Lee, Seung-Jung;Bang, Jung-Sik;Yang, Hee-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.831-833
    • /
    • 2008
  • 150 nm thick Ga-doped ZnO thin film, which was deposited by a sputtering process, was wet-chemically etched by using various organic acids such as oxalic, citric and formic acid. Wet etch parameters including etchant concentration and temperature are investigated for each etchant, and their effects on the etch rate and the feature of edge line are compared.

  • PDF

Optical Properties of Bi2O3-ZnO-SiO2 Glass System for Transparent Dielectric (Bi2O3-ZnO-SiO2 유리계의 투명유전체 후막에서 나타난 광학특성)

  • Jun J. S.;Cha M. R.;Kim H. S.
    • Korean Journal of Materials Research
    • /
    • v.14 no.9
    • /
    • pp.670-675
    • /
    • 2004
  • Glasses in the $Bi_{2}O_3-SiO_2-ZnO$ glasses system were examined as a potential replacement for lead-oxide glass frits with low firing temperature ($500\sim600^{\circ}C$) for the dielectric layer of a plasma display panel (PDP). The glasses were evaluated for glass transition temperature($T_{g}$) and thermal expansion coefficient(${\alpha}$). After forming transparent thick films by a screen-printing method, it was evaluated for the optical properties. The transmittance of thick films fired at $500-600^{\circ}C$ showed above $80\%$, which was not dependent on the firing temperature. As a result, many pores were observed at samples fired at low temperature, while the number of pores from samples prepared at high temperature decreased and the pores size increased.

CO Sensing Properties in Layer structure of SnO2-ZnO System prepared by Thick film Process (SnO2-ZnO계 후막센서 구조에 따른 CO 감지 특성)

  • Park, Bo-Seok;Hong, Kwang-Joon;Kim, Ho-Gi;Park, Jin-Seoung
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.155-162
    • /
    • 2002
  • The sensing properties of carbon monooxide were investigated as a function of mixing ratio and the lamination structure of 3mol% ZnO-doped $SnO_2$ and 3mol% $SnO_2$-doped ZnO. The lamination structures were fabricared monolayer, double layer, and hetero layer of $SnO_2$, Zno, and theirs mixture composition using thick film process. There was no second phase by the reaction of $SnO_2$ and ZnO. The conductance was decreased by the addition of ZnO in $SnO_2$, but it was increased with the addition of $SnO_2$ in ZnO. The conductance was increased with temperature and the inlet of CO. There was no improvement of sensitivity in the structure of mono- and double-layer. The hetero-layer structure, however, of $SnO_2$ 3ZnO-ZnO $3SnO_2$ showed the higher resistivity and the highest sensitivity. Ohmic characteristics was confirmed by the linear properties for I-V measurements.

Effect of Substrate Bias Voltage on the Electrical Properties of ZnO:Al Transparent Conducting Film Deposited on Organic Substrate (유기물 기판 위에 증착된 ZnO:Al 투명전도막의 전기적 특성에 미치는 기판 바이어스 전압의 효과)

  • Kwak, Dong-Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.78-84
    • /
    • 2009
  • In this paper, ZnO:Al thin film was deposited on polyethylene terephthalate(PET) substrate by capacitively coupled r. f. magnetron sputtering method from a ZnO target mixed with 2wt[%] Al2O3 to investigate the possible application of ZnO:Al film as a transparent conducting electrode for film typed DSCs. The effect of substrate bias on the electrical properties and film structure were studied. The results showed that a positive bias applied to the substrate during sputtering contributed to an improvement of electrical properties of the film by attracting electrons in the plasma to bombard the growing films. These bombardments provided additional energy to the growing ZnO:Al film on the substrate, resulting in significant variations in film structure and electrical properties. Electrical resistivity of the film decreases significantly as the positive bias increases up to +30[V] However, as the positive bias increases over +30[V], the resistivity decreases. The transmittance varies little as the substrate bias is increased from 0 to +60[V], and as r. f. powers increases from 160[W] to 240[W]. The film with electrical resistivity as low as $1.8{\times}10^{-3}[{\Omega}-cm]$ and optical transmittance of about 87.8[%] were obtained for 1,012[nm] thick film deposited with a substrate bias of +30[V].

The Influence of Ag Thickness on the Electrical and Optical Properties of ZnO/Ag/SnO2 Tri-layer Films

  • Park, Yun-Je;Choi, Jin-Young;Choe, Su-Hyeon;Kim, Yu-Sung;Cha, Byung-Chul;Kim, Daeil
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.3
    • /
    • pp.145-149
    • /
    • 2019
  • Transparent and conductive ZnO/Ag/SnO2 (ZAS) tri-layer films were deposited onto glass substrates at room temperature by using radio frequency (RF) and direct current (DC) magnetron sputtering. The thickness values of the ZnO and $SnO_2$ thin films were kept constant at 50 nm and the value for Ag interlayer was varied as 5, 10, 15, and 20 nm. In the XRD pattern the diffraction peaks were identified as the (002) and (103) planes of ZnO, while the (111), (200), (220), and (311) planes could be attributed to the Ag interlayer. The optical transmittance and electrical resistivity were dependent on the thickness of the Ag interlayer. The ZAS films with a 10 nm thick Ag interlayer exhibited a higher figure of merit than the other ZAS films prepared in this study. From the observed results, a ZAS film with a 10 nm thick Ag interlayer was believed to be an alternative transparent electrode candidate for various opto-electrical devices.