DOI QR코드

DOI QR Code

A Study on Glass/Mo/ZnO/Glass Thin-film-heaters for Water Heating

수중 발열을 위한 Glass/Mo/ZnO/Glass 구조의 박막형 발열체 연구

  • Kim, Jiwoo (School of Advanced Materials Engineering, Dong-Eui University) ;
  • Choi, Dooho (School of Advanced Materials Engineering, Dong-Eui University)
  • 김지우 (동의대학교 신소재공학부) ;
  • 최두호 (동의대학교 신소재공학부)
  • Received : 2022.03.07
  • Accepted : 2022.03.23
  • Published : 2022.03.30

Abstract

In this study, we demonstrated an eco-friendly thin-metallic-film-based heater which can be operated in water. Based on the materials stability, Mo was selected as the heating element to secure long-term stability. Using a magnetron sputtering, 40 nm-thick Mo layers were deposited onto a glass substrate, followed by the deposition of 60-nm-thick ZnO layer to prevent oxidation during the heater fabrication process. Then, PVB (Polyvinyl Butyral) was applied on top of ZnO layer and an additional glass substrate was placed, which were heated at 150℃ for 2 hr. The PVB was cured with strong adhesion by the processing condition. We operated the Glass/Mo/ZnO/Glass heater in water, and it was shown that the water temperature reached 50℃ within 2 minutes, with a minimal resistance change of the heater. Finally, the heaters exhibit a semi-transparency, and this aesthetic advantage is expected to contribute to the added value of the heater.

본 연구에서는 보일러 등에 적용을 하기 위하여 물속에 담군 채 가열할 수 있는 친환경 박막형 히터에 대한 결과를 보고한다. 장수명을 확보하기 위하여 소재 안정성이 높은 Mo 박막(40 nm)을 마그네트론 스퍼터법을 이용하여 Glass 기판상에 증착하였으며 후속 공정 진행 시 Mo 박막의 부식을 방지하기 위하여 상부에 ZnO 박막 (60 nm)을 형성하였다. 이후 투명 접착성을 가지는 PVB (Polyvinyl Butyral)를 이용하여 ZnO 박막 상부에 또 다른 Glass기판을 올려두고 열풍건조기 내에서 150℃의 온도에서 2시간동안 PVB를 경화시키며 접착시켜 Glass/Mo/ZnO/Glass 구조의 수중 히터를 완성하였다. 이렇게 제작한 발열체를 수중에 담근 후 발열 시 물의 온도가 2분 내 50℃까지 상승되는 것을 확인하였으며 미미한 수준의 저항증가가 발생하며 구조적 안정성 또한 확보되었다. 인가 전압의 세기에 따라 발열체의 온도가 제어되기 때문에 보일러에 적용할 때 사용자가 설정하는 온도를 용이하게 제어할 수 있을 것이라 기대된다. 마지막으로, 본 연구에서 제작한 박막형 히터는 반투명의 특성을 가져 심미성을 부여할 수 있어 제품의 부가가치를 더욱 높일 수 있을 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 한국연구재단 중견연구자지원사업(NRF-2022R1A2B5B01001938)의 지원을 받아 수행하였습니다.

References

  1. C. S. Shin, "Gas fired condensing boiler," The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea, 26(5), 396 (1997).
  2. D. T. Papanastasiou, A. Schultheiss, D. Munoz-Rojas, C. Celle, A. Carella, J.-P. Simonato, D. Bellet, "Transparent Heaters: A Review," Adv. Funct. Mater. 1910225 (2020). https://doi.org/10.1002/adfm.201910225
  3. D. Lee, G. Bang, M. Byun, D. Choi, "Highly flexible, transparent and conductive ultrathin silver film heaters for wearable electronics applications," Thin Solid Films 697, 137835 (2020). https://doi.org/10.1016/j.tsf.2020.137835
  4. T. Lee, D. Kim, M. E. Suk, G. Bang, J. Choi, J. S. Bae, J. H. Yoon, W. J. Moon, D. Choi, "Regulating Ag Wettability via Modulating Surface Stoichiometry of ZnO Substrates for Flexible Electronics," Adv. Funct. Mater., 31, 2104372 (2021). https://doi.org/10.1002/adfm.202104372
  5. D. Kim, D. Choi, "Ultra-thin aluminum thin films deposited by DC magnetron sputtering for the applications in flexible transparent electrodes," J. Microelectron. Packag. Soc. 25(2), 19 (2018). https://doi.org/10.6117/KMEPS.2018.25.2.019
  6. C. Zhang, C. Ji, Y. B. Park, L. J. Guo, "Thin-Metal-Film-Based Transparent Conductors: Material Preparation, Optical Design, and Device Applications," Adv. Opt. Mater. 2001298 (2020).
  7. Y. G. Bi, Y. F. Liu, X. L. Zhang, D. Yin, W. Q. Wang, J. Feng, H. B. Sun, "Ultrathin Metal Films as the Transparent Electrode," Adv. Opt. Mater. 1800778 (2018). https://doi.org/10.1002/adom.201800778
  8. D. Lee, D. Choi, "Highly thermostable ultrathin planar Ag transparent heaters," Microelectron. Eng. 251, 111658 (2022) https://doi.org/10.1016/j.mee.2021.111658
  9. H. Rashid, K. S. Rahman, M. I. Hossain, A. A. Nasser, F. H. Alharbi, M. Akhtaruzzaman, N. Amin, "Physical and electrical properties of molybdenum thin films grown by DC magnetron sputtering for photovoltaic application", Results in Physics, 14, 102515 (2019). https://doi.org/10.1016/j.rinp.2019.102515
  10. Y. Peng, Y. Sui, "Compatibility research on PVC/PVB blended membranes", Desalination, 196, 13 (2006). https://doi.org/10.1016/j.desal.2005.07.053
  11. M. A. Samieian, D. Cormie, D. Smith, W. Wholey, B. R. Blackman, "On the bonding between glass and PVB in laminated glass", Engineer. Fracture Mech., 214, 504 (2019). https://doi.org/10.1016/j.engfracmech.2019.04.006
  12. W. H. Jo, D. Choi, "Optimization of ZnO/Ag/ZnO transparent conductive electrodes fabricated by magnetron sputtering", Korean J. Metals and Mater. 57(2), 91 (2019). https://doi.org/10.3365/kjmm.2019.57.2.91