DOI QR코드

DOI QR Code

The Influence of Ag Thickness on the Electrical and Optical Properties of ZnO/Ag/SnO2 Tri-layer Films

  • Park, Yun-Je (School of Materials Science and Engineering, University of Ulsan) ;
  • Choi, Jin-Young (School of Materials Science and Engineering, University of Ulsan) ;
  • Choe, Su-Hyeon (School of Materials Science and Engineering, University of Ulsan) ;
  • Kim, Yu-Sung (School of Materials Science and Engineering, University of Ulsan) ;
  • Cha, Byung-Chul (Advanced Forming Processes R&D Group, Ulsan Regional Division, Korea Institute of Industrial Technology) ;
  • Kim, Daeil (School of Materials Science and Engineering, University of Ulsan)
  • Received : 2019.05.16
  • Accepted : 2019.06.24
  • Published : 2019.06.30

Abstract

Transparent and conductive ZnO/Ag/SnO2 (ZAS) tri-layer films were deposited onto glass substrates at room temperature by using radio frequency (RF) and direct current (DC) magnetron sputtering. The thickness values of the ZnO and $SnO_2$ thin films were kept constant at 50 nm and the value for Ag interlayer was varied as 5, 10, 15, and 20 nm. In the XRD pattern the diffraction peaks were identified as the (002) and (103) planes of ZnO, while the (111), (200), (220), and (311) planes could be attributed to the Ag interlayer. The optical transmittance and electrical resistivity were dependent on the thickness of the Ag interlayer. The ZAS films with a 10 nm thick Ag interlayer exhibited a higher figure of merit than the other ZAS films prepared in this study. From the observed results, a ZAS film with a 10 nm thick Ag interlayer was believed to be an alternative transparent electrode candidate for various opto-electrical devices.

Keywords

PMGHBJ_2019_v52n3_145_f0001.png 이미지

Fig. 1. SEM image of a ZAS film with a 10 nm thick Ag interlayer.

PMGHBJ_2019_v52n3_145_f0002.png 이미지

Fig. 2. The thickness profile of ZnO/Ag/SnO2 tri-layer films. (a) ZnO 50 nm/Ag 5 nm/SnO2 50 nm, (b) ZnO 50 nm/Ag 15 nm/SnO2 50 nm, (c) ZnO 50 nm/Ag 20 nm/SnO2 50 nm.

PMGHBJ_2019_v52n3_145_f0003.png 이미지

Fig. 3. XRD pattern of ZnO/Ag/SnO2 tri-layer films. (a) ZnO 50 nm/Ag 5 nm/SnO2 50 nm, (b) ZnO 50 nm/Ag 10 nm/SnO2 50 nm, (c) ZnO 50 nm/Ag 15 nm/SnO2 50 nm, (d) ZnO 50 nm/Ag 20 nm/SnO2 50 nm.

PMGHBJ_2019_v52n3_145_f0004.png 이미지

Fig. 4. Surface AFM images and RMS roughness of ZnO/Ag/SnO2 tri-layer films (Scan area; 3×3 μm2). (a) ZnO 50 nm/Ag 5 nm/SnO2 50 nm RMS 1.41 nm, (b) ZnO 50 nm/Ag 10 nm/SnO2 50 nm RMS 1.54 nm (c) ZnO 50 nm/Ag 15 nm/ SnO2 50 nm RMS 1.68 nm, (d) ZnO 50 nm/Ag 20 nm/SnO2 50 nm RMS 1.88 nm.

PMGHBJ_2019_v52n3_145_f0005.png 이미지

Fig. 5. The visible transmittance of ZnO/Ag/SnO2 trilayer films. (a) ZnO 50 nm/Ag 5 nm/SnO2 50 nm, (b) ZnO 50 nm /Ag 10 nm/SnO2 50 nm, (c) ZnO 50 nm/Ag 15 nm/SnO2 50 nm, (d) ZnO 50 nm/Ag 20 nm /SnO2 50 nm.

Table 1. Experimental conditions for SnO2 and ZnO/Ag/SnO2 thin films.

PMGHBJ_2019_v52n3_145_t0001.png 이미지

Table 2. The crystallite size of Ag (111) plane in the ZnO/Ag/SnO2 tri-layer films.

PMGHBJ_2019_v52n3_145_t0002.png 이미지

Table 3. Electrical properties of SnO2 single layer and ZnO 50 nm/Ag 5-20 nm/SnO2 50 nm tri-layer films.

PMGHBJ_2019_v52n3_145_t0003.png 이미지

Table 4. Figure of merit of SnO2 single layer and ZnO 50 nm/Ag 5-20 nm/SnO2 50 nm tri-layer films.

PMGHBJ_2019_v52n3_145_t0004.png 이미지

References

  1. S. K. Kim, S. H. Kim, S. Y. Kim, J. H. Jeon, T. K. Gong, D. Y. Yoon, D. H. Choi, D. I. Son, D. Kim, J. Kor. Inst. Surf. Eng., 47 (2014) 81. https://doi.org/10.5695/JKISE.2014.47.2.081
  2. J. R. Lee, D. Y. Lee, D. G. Kim, G. H. Lee, Y. D. Kim, P. K. Song, Met. Mater. Int., 14 (2008) 745. https://doi.org/10.3365/met.mat.2008.12.745
  3. W. T. Yen, Y. C. Lin, P. C. Yao, J. H. Ke, Y. L. Chen, Thin Solid Films, 518 (2010) 3882. https://doi.org/10.1016/j.tsf.2009.10.149
  4. S. Heo, J. Jeon, T. Gong, H. Moon, S. Kim, B. Cha, J. Kim, U. Jung, S. Park, D. Kim, Ceram. Int., 41 (2015) 9668. https://doi.org/10.1016/j.ceramint.2015.04.034
  5. S. Kim, S. H. Kim, S. Y. Kim, J. Jeon, T. Gong, D. Choi, D. Son, D. Kim, Ceram. Int., 40 (2014) 6673. https://doi.org/10.1016/j.ceramint.2013.11.127
  6. J. Jeon, T. Gong, S. Kim, S. Kim, S. Y. Kim, D. Choi, D. Son, D. Kim, J. Alloys Compd., 639 (2015) 1. https://doi.org/10.1016/j.jallcom.2015.02.123
  7. Y. S. Kim, J. H. Park, D. Kim, Vacuum, 82 (2008) 574. https://doi.org/10.1016/j.vacuum.2007.08.011
  8. M. Bendera, W. Seeliga, C. Daubeb, H. Frankenbergerb, B. Ockerb, J. Stollenwerkb, Thin Solid Films, 326 (1998) 67. https://doi.org/10.1016/S0040-6090(98)00520-3
  9. J. Jeong, H. Kim, M. Yi, Appl. Phys. Lett., 93 (2008) 033301. https://doi.org/10.1063/1.2955841
  10. H. Park, J. Kang, S. Na, D. Kim, H. Kim, Sol. Energy Mater. Sol., 93 (2009) 1994. https://doi.org/10.1016/j.solmat.2009.07.016
  11. M. G. Varnamkhasti, H. R. Fallah, M. Mostajaboddavati, A. Hassanzadeh, Vacuum, 86 (2012) 1318. https://doi.org/10.1016/j.vacuum.2011.12.002
  12. G. Haacke, New figure of merit for transparent conductors, J. Appl. Phys., 47 (1976) 4086. https://doi.org/10.1063/1.323240