Fig. 1. SEM image of a ZAS film with a 10 nm thick Ag interlayer.
Fig. 2. The thickness profile of ZnO/Ag/SnO2 tri-layer films. (a) ZnO 50 nm/Ag 5 nm/SnO2 50 nm, (b) ZnO 50 nm/Ag 15 nm/SnO2 50 nm, (c) ZnO 50 nm/Ag 20 nm/SnO2 50 nm.
Fig. 3. XRD pattern of ZnO/Ag/SnO2 tri-layer films. (a) ZnO 50 nm/Ag 5 nm/SnO2 50 nm, (b) ZnO 50 nm/Ag 10 nm/SnO2 50 nm, (c) ZnO 50 nm/Ag 15 nm/SnO2 50 nm, (d) ZnO 50 nm/Ag 20 nm/SnO2 50 nm.
Fig. 4. Surface AFM images and RMS roughness of ZnO/Ag/SnO2 tri-layer films (Scan area; 3×3 μm2). (a) ZnO 50 nm/Ag 5 nm/SnO2 50 nm RMS 1.41 nm, (b) ZnO 50 nm/Ag 10 nm/SnO2 50 nm RMS 1.54 nm (c) ZnO 50 nm/Ag 15 nm/ SnO2 50 nm RMS 1.68 nm, (d) ZnO 50 nm/Ag 20 nm/SnO2 50 nm RMS 1.88 nm.
Fig. 5. The visible transmittance of ZnO/Ag/SnO2 trilayer films. (a) ZnO 50 nm/Ag 5 nm/SnO2 50 nm, (b) ZnO 50 nm /Ag 10 nm/SnO2 50 nm, (c) ZnO 50 nm/Ag 15 nm/SnO2 50 nm, (d) ZnO 50 nm/Ag 20 nm /SnO2 50 nm.
Table 1. Experimental conditions for SnO2 and ZnO/Ag/SnO2 thin films.
Table 2. The crystallite size of Ag (111) plane in the ZnO/Ag/SnO2 tri-layer films.
Table 3. Electrical properties of SnO2 single layer and ZnO 50 nm/Ag 5-20 nm/SnO2 50 nm tri-layer films.
Table 4. Figure of merit of SnO2 single layer and ZnO 50 nm/Ag 5-20 nm/SnO2 50 nm tri-layer films.
References
- S. K. Kim, S. H. Kim, S. Y. Kim, J. H. Jeon, T. K. Gong, D. Y. Yoon, D. H. Choi, D. I. Son, D. Kim, J. Kor. Inst. Surf. Eng., 47 (2014) 81. https://doi.org/10.5695/JKISE.2014.47.2.081
- J. R. Lee, D. Y. Lee, D. G. Kim, G. H. Lee, Y. D. Kim, P. K. Song, Met. Mater. Int., 14 (2008) 745. https://doi.org/10.3365/met.mat.2008.12.745
- W. T. Yen, Y. C. Lin, P. C. Yao, J. H. Ke, Y. L. Chen, Thin Solid Films, 518 (2010) 3882. https://doi.org/10.1016/j.tsf.2009.10.149
- S. Heo, J. Jeon, T. Gong, H. Moon, S. Kim, B. Cha, J. Kim, U. Jung, S. Park, D. Kim, Ceram. Int., 41 (2015) 9668. https://doi.org/10.1016/j.ceramint.2015.04.034
- S. Kim, S. H. Kim, S. Y. Kim, J. Jeon, T. Gong, D. Choi, D. Son, D. Kim, Ceram. Int., 40 (2014) 6673. https://doi.org/10.1016/j.ceramint.2013.11.127
- J. Jeon, T. Gong, S. Kim, S. Kim, S. Y. Kim, D. Choi, D. Son, D. Kim, J. Alloys Compd., 639 (2015) 1. https://doi.org/10.1016/j.jallcom.2015.02.123
- Y. S. Kim, J. H. Park, D. Kim, Vacuum, 82 (2008) 574. https://doi.org/10.1016/j.vacuum.2007.08.011
- M. Bendera, W. Seeliga, C. Daubeb, H. Frankenbergerb, B. Ockerb, J. Stollenwerkb, Thin Solid Films, 326 (1998) 67. https://doi.org/10.1016/S0040-6090(98)00520-3
- J. Jeong, H. Kim, M. Yi, Appl. Phys. Lett., 93 (2008) 033301. https://doi.org/10.1063/1.2955841
- H. Park, J. Kang, S. Na, D. Kim, H. Kim, Sol. Energy Mater. Sol., 93 (2009) 1994. https://doi.org/10.1016/j.solmat.2009.07.016
- M. G. Varnamkhasti, H. R. Fallah, M. Mostajaboddavati, A. Hassanzadeh, Vacuum, 86 (2012) 1318. https://doi.org/10.1016/j.vacuum.2011.12.002
- G. Haacke, New figure of merit for transparent conductors, J. Appl. Phys., 47 (1976) 4086. https://doi.org/10.1063/1.323240