• Title/Summary/Keyword: ZnO:Ga film

Search Result 322, Processing Time 0.032 seconds

The Characteristic Changes of Amorphous-InGaZnO Thin Film according to RF Power (RF Power에 따른 Amorphous-InGaZnO 박막의 특성 변화)

  • Kim, Sang-Hun;Park, Yong-Heon;Kim, Hong-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.4
    • /
    • pp.293-297
    • /
    • 2010
  • We have studied the optical and electrical properties of a-IGZO thin films on the n-type semiconductor fabricated by RF magnetron sputtering method. The ceramic target was used in which $In_2O_3$, $Ga_2O_3$ and ZnO powder were mixed with 1:1:2 mol% ratio and furnished. The RF power was set at 25 W, 50 W, 75 W and 100 W as a variable process condition. The transmittance of the films in the visible range was above 80%, and it was 92% in the case of 25 W power. AFM analysis showed that the roughness increased as increasing RF power, and XRD showed amorphous structure of the films without any peak. The films are electrically characterized by high mobility above 10 $cm^2/V{\cdot}s$ at low RF power, high carrier concentration and low resistivity. It is required to study further finding the optimal process condition such as lowering the RF power, prolonging the deposition ratio and qualification analysis.

Effect of the Concentration of Citrate on the Growth of Aqueous Chemical Bath Deposited ZnO and Application of the Film to Cu(In,Ga)Se2 Solar Cells (Citrate 농도에 따른 수용액 화학조 증착 ZnO 성장 및 ZnO 박막의 Cu(In,Ga)Se2 태양전지 응용)

  • Cho, Kyung Soo;Jang, Hyunjun;Oh, Jae-Young;Kim, Jae Woo;Lee, Jun Su;Choi, Yesol;Hong, Ki-Ha;Chung, Choong-Heui
    • Korean Journal of Materials Research
    • /
    • v.30 no.4
    • /
    • pp.204-210
    • /
    • 2020
  • ZnO thin films are of considerable interest because they can be customized by various coating technologies to have high electrical conductivity and high visible light transmittance. Therefore, ZnO thin films can be applied to various optoelectronic device applications such as transparent conducting thin films, solar cells and displays. In this study, ZnO rod and thin films are fabricated using aqueous chemical bath deposition (CBD), which is a low-cost method at low temperatures, and environmentally friendly. To investigate the structural, electrical and optical properties of ZnO for the presence of citrate ion, which can significantly affect crystal form of ZnO, various amounts of the citrate ion are added to the aqueous CBD ZnO reaction bath. As a result, ZnO crystals show a nanorod form without citrate, but a continuous thin film when citrate is above a certain concentration. In addition, as the citrate concentration increases, the electrical conductivity of the ZnO thin films increases, and is almost unchanged above a certain citrate concentration. Cu(In,Ga)Se2 (CIGS) solar cell substrates are used to evaluate whether aqueous CBD ZnO thin films can be applicable to real devices. The performance of aqueous CBD ZnO thin films shows performance similar to that of a sputter-deposited ZnO:Al thin film as top transparent electrodes of CIGS solar cells.

Effects of Ta addition in Co-sputtering Process for Ta-doped Indium Tin Oxide Thin Film Transistors

  • Park, Si-Nae;Son, Dae-Ho;Kim, Dae-Hwan;Gang, Jin-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.334-334
    • /
    • 2012
  • Transparent oxide semiconductors have recently attracted much attention as channel layer materials due to advantageous electrical and optical characteristics such as high mobility, high stability, and good transparency. In addition, transparent oxide semiconductor can be fabricated at low temperature with a low production cost and it permits highly uniform devices such as large area displays. A variety of thin film transistors (TFTs) have been studied including ZnO, InZnO, and InGaZnO as the channel layer. Recently, there are many studies for substitution of Ga in InGaZnO TFTs due to their problem, such as stability of devices. In this work, new quaternary compound materials, tantalum-indium-tin oxide (TaInSnO) thin films were fabricated by using co-sputtering and used for the active channel layer in thin film transistors (TFTs). We deposited TaInSnO films in a mixed gas (O2+Ar) atmosphere by co-sputtering from Ta and ITO targets, respectively. The electric characteristics of TaInSnO TFTs and thin films were investigated according to the RF power applied to the $Ta_2O_5$ target. The addition of Ta elements could suppress the formation of oxygen vacancies because of the stronger oxidation tendency of Ta relative to that of In or Sn. Therefore the free carrier density decreased with increasing RF power of $Ta_2O_5$ in TaInSnO thin film. The optimized characteristics of TaInSnO TFT showed an on/off current ratio of $1.4{\times}108$, a threshold voltage of 2.91 V, a field-effect mobility of 2.37 cm2/Vs, and a subthreshold swing of 0.48 V/dec.

  • PDF

Effects of Substrate Temperature on Properties of (Ga,Ge)-Codoped ZnO Thin Films Prepared by RF Magnetron Sputtering (RF 마그네트론 스퍼트링에 의한 Ga 와 Ge가 도핑된 ZnO 박막 특성의 온도효과)

  • Jung, Il-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.584-588
    • /
    • 2011
  • The ZnO thin films doped with Ga and Ge (GZO:Ge) were prepared on glass substrate using RF sputtering system. Structural, morphological and optical properties of the films deposited in different temperatures were studied. Proportion of the element of using target was 97 wt% ZnO, 2.5 wt% Ga and 0.5 wt% Ge with 99.99% highly purity. Structural properties of the samples deposited in different temperatures with 200 w RF power were investigated by field emission scanning electron microscopy, FE-SEM images and x-ray diffraction XRD analysis. Atomic force microscopy, AFM images were able to show the grain scales and surface roughness of each film rather clearly than SEM images. it was showed that increasing temperature have better surface smoothness by FE-SEM and AFM images. Transmittance study using UV-Vis spectrometer showed that all the samples have highly transparent in visible region (300~800 nm). In addition, it can be able to calculate bandgap energy from absorbance data obtained with transmittance. The hall resistivity, mobility, and optical band gap energy are influenced by the temperature.

Comparison on Properties of ZnO Thin Films Grown by RF Magnetron Sputtering on Various Oxide Substrates (다양한 산화물 기판 위에 RF 마그네트론 스퍼터링 방법으로 성장된 ZnO 박막의 특성 비교)

  • Lee, Jae-Wook;Jung, Chul-Won;Han, Seok-Kyu;Choi, Jun-Ho;Hong, Soon-Ku;Cho, Hyung-Koun;Song, Jung-Hoon;Lee, Jeong-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.4
    • /
    • pp.289-293
    • /
    • 2007
  • ZnO thn films are grown on five kinds of oxide substrates including $c-Al_2O_3(0001),\;r-Al_2O_3(01-12)$, MgO(100), MgO(111), $NdGaO_3(110)$ by rf magnetron sputtering and effects substrate types on properties of ZnO thin films ate investigated. In order to compare the substrate effects one growth condition is selected and all the films are grown by the same growth condition. Structural and optical properties of the ZnO films ate different depending on the substrates although the films ate not epitaxial but polycrystalline. The ZnO film grown on $NdGaO_3(100)$ substrate shows the best overall properties among the films grown on substrates investigated in this study.

Enhancement of photoluminescence and electrical properties of Ga doped ZnO thin film grown on $\alpha$-$Al_2O_3$(0001) single crystal substrate by RE magnetron sputtering through rapid thermal annealing (RF 마그네트론 스퍼터링 법으로 사파이어 기판 위에 성장시킨 ZnO: Ga 박막의 RTA 처리에 따른 photoluminescence 특성변화)

  • Cho, Jung;Na, Jong-Bum;Oh, Min-Seok;Yoon, Ki-Hyun;Jung, Hyung-Jin;Choi, Won-Guk
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.3
    • /
    • pp.335-340
    • /
    • 2001
  • $Ga_2O_3$(1 wt%)-doped ZnO(GZO) thin films were grown on ${\alpha}-Al_2O_3$ (0001) by rf magnetron sputtering at $510^{\circ}C$, whose crystal structure was polycrystalline. As-grown GZO thin film shows poor electrical properties and photoluminescence (PL) spectra. To improve these properties, GZO thin films were annealed at 800-$900^{\circ}C$ in $N_2$atmosphere for 3 min. After the rapid thermal annealing(RTA), deep defect-level emission disappears and near-band emission is greatly enhanced. Annealed GZO thin films show very low resisitivity of $2.6\times10^{-4}\Omega$/cm with $3.9\times10^{20}/\textrm{cm}^3$ carrier concentration and exceptionally high mobility of 60 $\textrm{cm}^2$/V.s. These improved physical properties are explained in terms of translation of doped-Ga atoms from interstitial to substitutional site.

  • PDF

Sputtering effect on chemical state changes in amorphous Ga-In-Zn-O thin film

  • Lee, Mi-Ji;Gang, Se-Jun;Baek, Jae-Yun;Kim, Hyeong-Do;Jeong, Jae-Gwan;Lee, Jae-Cheol;Lee, Jae-Hak;Sin, Hyeon-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.134-134
    • /
    • 2010
  • Ga-In-Zn-O 물질은 비정질상태에서 높은 전하 운동성을 가지고 있으며 차세대 투명전극 thin film transistor 대안 소재로 각광받고 있다. 그런데 이 물질은 ion sputtering에 따라 전기적인 특성에 큰 변화가 관찰되고 있으며, 이는 표면에서의 화학적 상태가 전기적 특성을 좌우할 것이라는 것을 의미한다. 또한 보다 안정적이고 신뢰적인 소자를 구현하기 위해서는 ion sputtering에 의한 표면에서의 화학적 특성 변화를 이해하는 것이 매우 중요하다는 것을 의미한다. 본 연구에서는 $Ga_2O_3:In_2O_3$:ZnO의 비율이 각각 1:1:1, 2:2:1, 3:2:1 그리고 4:2:1인 시료를 $Ne^+$이온을 이용하여 sputtering하면서 표면에 민감한 분광분석 기법인 x-ray photoelectron spectroscopy와 x-ray absorption spectroscopy를 이용하여 분광정보의 변화들을 연구하였다. 실험에 의하면, Ga 3d의 양에 비해서 In 4d, Zn 3d의 양은 sputtering 시간에 따라서 각 각 양이 줄어들었으며, 전체적으로 보다 산화가가 높은 경향을 보였으며, valence band maximum 근처에 subgap state를 형성하는 것을 관찰하였다. 또한 sputtering을 계속하는 경우 In 3d, In 4d, 및 Fermi energy 근처에 metallic state가 형성되는 것을 관찰하였다. 이러한 subgap state와 metallic state의 관측은 각기 sputtering에 따라서, 아직 명확하지는 않지만, surface state의 형성 및/혹은 oxygen interstitial의 형성 그리고 metallic In의 형성 및/혹은 oxygen defect의 형성이 이루어지는 것을 의미한다.

  • PDF

Study of relation between gate overlap length and device reliability in amorphous InGaZnO thin film transistors (비정질 InGaZnO 박막트랜지스터에서 Gate overlap 길이와 소자신뢰도 관계 연구)

  • Moon, Young-Seon;Kim, Gun-Young;Jeong, Jin-Yong;Kim, Dae-Hyun;Park, Jong-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.769-772
    • /
    • 2014
  • The device reliability in amorphous InGaZnO under NBS(Negative Bias Stress) and hot carrier stress with different gate overlap has been characterized. Amorphous InGaZnO thin film transistor has been measured. and is channel $width=104{\mu}m$, $length=10{\mu}m$ with gate overlap $length=0,1,2,3{\mu}m$. The device reliability has been analyzed by I-V characteristics. From the experiment results, threshold voltage variation has been increased with increasing of the gate overlap length after hot carrier stress. Also, threshold voltage variation has been decreased and Hump Effect has been observed later with increasing of the gate overlap length after NBS.

  • PDF

Au Catalyst Free and Effect of Ga-doped ZnO Seed Layer on Structural Properties of ZnO Nanowire Arrays

  • Yer, In-Hyung;Roh, Ji-Hyoung;Shin, Ju-Hong;Park, Jae-Ho;Jo, Seul-Ki;Park, On-Jeon;Moon, Byung-Moo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.354-354
    • /
    • 2012
  • In this study, we report the vertically aligned ZnO nanowires by using different type of Ga-doped ZnO (GZO) thin films as seed layers to investigate how the underlying GZO film micro structure affects the distribution of ZnO nanowires. Arrays of highly ordered ZnO nanowires have been synthesized on GZO thin film seed layer prepared on p-Si substrates ($7-13{\Omega}cm$) with utilize of a pulsed laser deposition (PLD). With the vapor-liquid-solid (VLS) growth process, the ZnO nanowire synthesis carries out no metal catalyst and is cost-effective; furthermore, The GZO seed layer facilitates the uniform growth of well-aligned ZnO nanowires. The influence of the growth temperature and various thickness of GZO seed layer have been analyzed. Crystallinity of grown seed layer was studied by X-Ray diffraction (XRD); diameter and morphology of ZnO nanowires on seed layer were investigated by field emission scanning electron microscopy (FE-SEM). Our results suggest that the GZO seed layer with high c-axis orientation, good crystallinity, and less lattice mismatch is key parameters to optimize the growth of well-aligned ZnO nanowire arrays.

  • PDF

Manufacture and characteristic evaluation of Amorphous Indium-Gallium-Zinc-Oxide (IGZO) Thin Film Transistors

  • Seong, Sang-Yun;Han, Eon-Bin;Kim, Se-Yun;Jo, Gwang-Min;Kim, Jeong-Ju;Lee, Jun-Hyeong;Heo, Yeong-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.166-166
    • /
    • 2010
  • Recently, TFTs based on amorphous oxide semiconductors (AOSs) such as ZnO, InZnO, ZnSnO, GaZnO, TiOx, InGaZnO(IGZO), SnGaZnO, etc. have been attracting a grate deal of attention as potential alternatives to existing TFT technology to meet emerging technological demands where Si-based or organic electronics cannot provide a solution. Since, in 2003, Masuda et al. and Nomura et al. have reported on transparent TFTs using ZnO and IGZO as active layers, respectively, much efforts have been devoted to develop oxide TFTs using aforementioned amorphous oxide semiconductors as their active layers. In this thesis, I report on the performance of thin-film transistors using amorphous indium gallium zinc oxides for an active channel layer at room temperature. $SiO_2$ was employed as the gate dielectric oxide. The amorphous indium gallium zinc oxides were deposited by RF magnetron sputtering. The carrier concentration of amorphous indium gallium zinc oxide was controlled by oxygen pressure in the sputtering ambient. Devices are realized that display a threshold voltage of 1.5V and an on/off ration of > $10^9$ operated as an n-type enhancement mode with saturation mobility with $9.06\;cm^2/V{\cdot}s$. The devices show optical transmittance above 80% in the visible range. In conclusion, the fabrication and characterization of thin-film transistors using amorphous indium gallium zinc oxides for an active channel layer were reported. The operation of the devices was an n-type enhancement mode with good saturation characteristics.

  • PDF