• Title/Summary/Keyword: Zero-Finding Problem

Search Result 29, Processing Time 0.03 seconds

NEW ITERATIVE METHODS FOR FINDING A COMMON ZERO OF A FINITE FAMILY OF MONOTONE OPERATORS IN HILBERT SPACES

  • Kim, Jong Kyu;Tuyen, Truong Minh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1347-1359
    • /
    • 2017
  • The purpose of this paper is to give some new iterative methods for finding a common zero of a finite family of monotone operators in Hilbert spaces. We also give the applications of the obtained result for the convex feasibility problem and constrained convex optimization problem in Hilbert spaces.

A HYBRID PROJECTION METHOD FOR COMMON ZERO OF MONOTONE OPERATORS IN HILBERT SPACES

  • Truong, Minh Tuyen
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.447-456
    • /
    • 2017
  • The purpose of this paper is to introduce some strong convergence theorems for the problem of finding a common zero of a finite family of monotone operators and the problem of finding a common fixed point of a finite family of nonexpansive in Hilbert spaces by hybrid projection method.

FINDING A ZERO OF THE SUM OF TWO MAXIMAL MONOTONE OPERATORS WITH MINIMIZATION PROBLEM

  • Abdallah, Beddani
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.4
    • /
    • pp.895-902
    • /
    • 2022
  • The aim of this paper is to construct a new method for finding the zeros of the sum of two maximally monotone mappings in Hilbert spaces. We will define a simple function such that its set of zeros coincide with that of the sum of two maximal monotone operators. Moreover, we will use the Newton-Raphson algorithm to get an approximate zero. In addition, some illustrative examples are given at the end of this paper.

NLP Formulation for the Topological Structural Optimization (구조체의 위상학적 최적화를 위한 비선형 프로그래밍)

  • Bark, Jaihyeong;Omar N. Ghattas;Lee, Li-Hyung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.04a
    • /
    • pp.182-189
    • /
    • 1996
  • The focus of this study is on the problem of the design of structure of undetermined topology. This problem has been regarded as being the most challenging of structural optimization problems, because of the difficulty of allowing topology to change. Conventional approaches break down when element sizes approach to zero, due to stiffness matrix singularity. In this study, a novel nonlinear Programming formulation of the topology Problem is developed and examined. Its main feature is the ability to account for topology variation through zero element sizes. Stiffness matrix singularity is avoided by embedding the equilibrium equations as equality constraints in the optimization problem. Although the formulation is general, two dimensional plane elasticity examples are presented. The design problem is to find minimum weight of a plane structure of fixed geometry but variable topology, subject to constraints on stress and displacement. Variables are thicknesses of finite elements, and are permitted to assume zero sizes. The examples demonstrate that the formulation is effective for finding at least a locally minimal weight.

  • PDF

ON STRONG METRIC DIMENSION OF ZERO-DIVISOR GRAPHS OF RINGS

  • Bhat, M. Imran;Pirzada, Shariefuddin
    • Korean Journal of Mathematics
    • /
    • v.27 no.3
    • /
    • pp.563-580
    • /
    • 2019
  • In this paper, we study the strong metric dimension of zero-divisor graph ${\Gamma}(R)$ associated to a ring R. This is done by transforming the problem into a more well-known problem of finding the vertex cover number ${\alpha}(G)$ of a strong resolving graph $G_{sr}$. We find the strong metric dimension of zero-divisor graphs of the ring ${\mathbb{Z}}_n$ of integers modulo n and the ring of Gaussian integers ${\mathbb{Z}}_n$[i] modulo n. We obtain the bounds for strong metric dimension of zero-divisor graphs and we also discuss the strong metric dimension of the Cartesian product of graphs.

REGULARIZATION FOR THE PROBLEM OF FINDING A SOLUTION OF A SYSTEM OF NONLINEAR MONOTONE ILL-POSED EQUATIONS IN BANACH SPACES

  • Tran, Thi Huong;Kim, Jong Kyu;Nguyen, Thi Thu Thuy
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.849-875
    • /
    • 2018
  • The purpose of this paper is to present an operator method of regularization for the problem of finding a solution of a system of nonlinear ill-posed equations with a monotone hemicontinuous mapping and N inverse-strongly monotone mappings in Banach spaces. A regularization parameter choice is given and convergence rate of the regularized solutions is estimated. We also give the convergence and convergence rate for regularized solutions in connection with the finite-dimensional approximation. An iterative regularization method of zero order in a real Hilbert space and two examples of numerical expressions are also given to illustrate the effectiveness of the proposed methods.

A Nonlinear Programming Formulation for the Topological Structural Optimization (구조체의 위상학적 최적화를 위한 비선형 프로그래밍)

  • 박재형;이리형
    • Computational Structural Engineering
    • /
    • v.9 no.3
    • /
    • pp.169-177
    • /
    • 1996
  • The focus of this study is on the problem of the design of structure of undetermined topology. This problem has been regarded as being the most challenging of structural optimization problems, because of the difficulty of allowing topology to change. Conventional approaches break down when element sizes approach to zero, due to stiffness matrix singularity. In this study, a novel nonlinear programming formulation of the topology problem is presented. Its main feature is the ability to account for topology variation through zero element sizes. Stiffness matrix singularity is avoided by embedding the equilibrium equations as equality constraints in the optimization problem. Although the formulation is general, two dimensional plane elasticity examples are presented. The design problem is to find minimum weight of a plane structure of fixed geometry but variable topology, subject to constraints on stress and displacement. Variables are thicknesses of finite elements, and are permitted to assume zero sizes. The examples demonstrate that the formulation is effective for finding at least a locally minimal weight.

  • PDF

Shape Finding of Unstable Link Structures (불안정(不安定) Link 구조물(構造物)의 형태해석(形態解析)에 관(關)한 연구(硏究))

  • Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.2 s.8
    • /
    • pp.101-107
    • /
    • 2003
  • There exists a structural problem for link structures in the unstable state. The primary characteristics of this problem are in the existence of rigid body displacements without strain, and in the possibility of the introduction of prestressing to change an unstable state into a stable state. When we make local linearized incremental equations in order to obtain knowledge about these unstable structures, the determinant of the coefficient matrices is zero, so that we face a numerically unstable situation. This is similar to the situation in the stability problem. To avoid such a difficult situation, in this paper a simple and straightforward method was presented by means of the generalized inverse for the numerical analysis of stability problem.

  • PDF

Design and Configuration of Reconfigurable ATM Networks with Unreliable Links

  • Lee, Jong-Hyup
    • ETRI Journal
    • /
    • v.21 no.4
    • /
    • pp.9-22
    • /
    • 1999
  • This paper considers a problem of configuring both physical backbone and logical virtual path (VP) networks in a reconfigurable asynchronous transfer mode (ATM) network where links are subject to failures. The objective is to determine jointly the VP assignment, the capacity assignment of physical links and the bandwidth allocation of VPs, and the routing assignment of traffic demand at least cost. The network cost includes backbone link capacity expansion cost and penalty cost for not satisfying the maximum throughput of the traffic due to link failures or insufficient link capacities. The problem is formulated as a zero-one non-linear mixed integer programming problem, for which an effective solution procedure is developed by using a Lagrangean relaxation technique for finding a lower bound and a heuristic method exploited for improving the upper bound of any intermediate solution. The solution procedure is tested for its effectiveness with various numerical examples.

  • PDF

Algorithm for Finding a Longest Non-negative Path in a Tree of Degree 3 (차수 3인 트리에서 가장 긴 비음수 경로를 찾는 알고리즘)

  • 김성권
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.7
    • /
    • pp.397-401
    • /
    • 2004
  • In an edge-weighted(positive, negative, or zero weights are possible) tree, we want to solve the problem of finding a longest path such that the sum of the weights of the edges in the path is non-negative. We present an algorithm to find a longest non-negative path of a degree 3 tree in Ο(n log n) time, where n is the number of nodes in the tree.