DOI QR코드

DOI QR Code

NEW ITERATIVE METHODS FOR FINDING A COMMON ZERO OF A FINITE FAMILY OF MONOTONE OPERATORS IN HILBERT SPACES

  • Received : 2016.07.12
  • Accepted : 2016.12.15
  • Published : 2017.07.31

Abstract

The purpose of this paper is to give some new iterative methods for finding a common zero of a finite family of monotone operators in Hilbert spaces. We also give the applications of the obtained result for the convex feasibility problem and constrained convex optimization problem in Hilbert spaces.

Keywords

References

  1. V. Barbu and Th. Precupanu, Convexity and Optimization in Banach spaces, Editura Academiei R. S. R., Bucharest, 1978.
  2. H. H. Bauschke, E. Matouskova, and S. Reich, Projection and proximal point methods convergence results and counterexamples, Nonlinear Anal. 56 (2004), no. 5, 715-738. https://doi.org/10.1016/j.na.2003.10.010
  3. H. Brezis and P. L. Lions, Produits infinis de resolvantes, Israel J. Math. 29 (1978), no. 4, 329-345. https://doi.org/10.1007/BF02761171
  4. R. E. Bruck, A strongly convergent iterative solution of 0 ${\in}$ U(x) for a maximal monotone operator U in Hilbert space, J. Math. Anal. Appl. 48 (1974), 114-126. https://doi.org/10.1016/0022-247X(74)90219-4
  5. Y. J. Cho and X. L. Qin, Viscosity approximation methods for a family of m-accretive mapping in reflexive Banach spaces, Positivity 12 (2008), no. 3, 483-494. https://doi.org/10.1007/s11117-007-2181-8
  6. K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Stud. Adv. Math. 28, Cambridge Univ. Press, Cambridge, UK, 1990.
  7. O. Guler, On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim. 29 (1991), no. 2, 403-419. https://doi.org/10.1137/0329022
  8. B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967), 957-961. https://doi.org/10.1090/S0002-9904-1967-11864-0
  9. J. S. Jung, Strong convergence of an iterative method for finding common zeros of a finite family of accretive operators, Commun. Korean Math. Soc. 24 (2009), no. 3, 381-393. https://doi.org/10.4134/CKMS.2009.24.3.381
  10. S. Kamimura and W. Takahashi, Approximating solutions of maximal monotone operators in Hilbert spaces, J. Approx. Theory 106 (2000), no. 2, 226-240. https://doi.org/10.1006/jath.2000.3493
  11. J. K. Kim and T. M. Tuyen, Viscosity approximation method with Meir-Keeler contractions for common zero of accretive operators in Banach spaces, Fixed Point Theory Appl. 2015 (2015), 17 pp. https://doi.org/10.1186/s13663-015-0267-8
  12. J. K. Kim and T. M. Tuyen, Approximation common zero of two accretive operators in Banach spaces, Appl. Math. Comput. 283 (2016), 265-281.
  13. N. Lehdili and A. Moudafi, Combining the proximal algorithm and Tikhonov regularization, Optimization 37 (1996), no. 3, 239-252. https://doi.org/10.1080/02331939608844217
  14. G. Marino and H. K. Xu, Weak and strong convergence theorems for strict pseudo contractions in Hilbert spaces, J. Math. Anal. Appl. 329 (2007), no. 1, 336-346. https://doi.org/10.1016/j.jmaa.2006.06.055
  15. O. Nevanlinna and S. Reich, Strong convergence of contraction semigroups and of iter- ative methods for accretive operators in Banach spaces, Israel J. Math. 32 (1979), no. 1, 44-58. https://doi.org/10.1007/BF02761184
  16. S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 67 (1979), no. 2, 274-276. https://doi.org/10.1016/0022-247X(79)90024-6
  17. S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980), no. 1, 287-292. https://doi.org/10.1016/0022-247X(80)90323-6
  18. R. T. Rockafellar, Characterization of the subdifferentials of convex functions, Pacific J. Math. 17 (1966), 497-510. https://doi.org/10.2140/pjm.1966.17.497
  19. R. T. Rockafellar, Monotone operators and proximal point algorithm, SIAM J. Control Optim. 14 (1976), no. 5, 887-897.
  20. Y. Song and C. Yang, A note on a paper "A regularization method for the proximal point algorithm", J. Glob. Optim. 43 (2009), no. 1, 171-174. https://doi.org/10.1007/s10898-008-9279-9
  21. T. M. Tuyen, Strong convergence theorem for a common zero of m-accretive mappings in Banach spaces by viscosity approximation methods, Nonlinear Funct. Anal. Appl. 17 (2012), 187-197.
  22. H. K. Xu, Iterative algorithms for nonlinear operators, J. Lond. Math. Soc. 66 (2002), no. 1, 240-256. https://doi.org/10.1112/S0024610702003332
  23. H. K. Xu, A regularization method for the proximal point algorithm, J. Global Optim. 36 (2006), no. 1, 115-125. https://doi.org/10.1007/s10898-006-9002-7
  24. H. K. Xu, Strong convergence of an iterative method for nonexpansive and accretive operators, J. Math. Anal. Appl. 314 (2006), no. 2, 631-643. https://doi.org/10.1016/j.jmaa.2005.04.082
  25. Y. Yamada, The hybrid steepest descent method for the variational inequality problem over the intersection of xed point sets of nonexpansive mappings, Inherently parallel algorithms in feasibility and optimization and their applications (Haifa, 2000), 473-504, Stud. Comput. Math., 8, North-Holland, Amsterdam, 2001.
  26. H. Zegeye and N. Shahzad, Strong convergence theorems for a common zero of a nite family of m-accretive mappings, Nonlinear Anal. 66 (2007), no. 5, 1161-1169. https://doi.org/10.1016/j.na.2006.01.012