References
- V. Barbu and Th. Precupanu, Convexity and Optimization in Banach spaces, Editura Academiei R. S. R., Bucharest, 1978.
- H. H. Bauschke, E. Matouskova, and S. Reich, Projection and proximal point methods convergence results and counterexamples, Nonlinear Anal. 56 (2004), no. 5, 715-738. https://doi.org/10.1016/j.na.2003.10.010
- H. Brezis and P. L. Lions, Produits infinis de resolvantes, Israel J. Math. 29 (1978), no. 4, 329-345. https://doi.org/10.1007/BF02761171
-
R. E. Bruck, A strongly convergent iterative solution of 0
${\in}$ U(x) for a maximal monotone operator U in Hilbert space, J. Math. Anal. Appl. 48 (1974), 114-126. https://doi.org/10.1016/0022-247X(74)90219-4 - Y. J. Cho and X. L. Qin, Viscosity approximation methods for a family of m-accretive mapping in reflexive Banach spaces, Positivity 12 (2008), no. 3, 483-494. https://doi.org/10.1007/s11117-007-2181-8
- K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Stud. Adv. Math. 28, Cambridge Univ. Press, Cambridge, UK, 1990.
- O. Guler, On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim. 29 (1991), no. 2, 403-419. https://doi.org/10.1137/0329022
- B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967), 957-961. https://doi.org/10.1090/S0002-9904-1967-11864-0
- J. S. Jung, Strong convergence of an iterative method for finding common zeros of a finite family of accretive operators, Commun. Korean Math. Soc. 24 (2009), no. 3, 381-393. https://doi.org/10.4134/CKMS.2009.24.3.381
- S. Kamimura and W. Takahashi, Approximating solutions of maximal monotone operators in Hilbert spaces, J. Approx. Theory 106 (2000), no. 2, 226-240. https://doi.org/10.1006/jath.2000.3493
- J. K. Kim and T. M. Tuyen, Viscosity approximation method with Meir-Keeler contractions for common zero of accretive operators in Banach spaces, Fixed Point Theory Appl. 2015 (2015), 17 pp. https://doi.org/10.1186/s13663-015-0267-8
- J. K. Kim and T. M. Tuyen, Approximation common zero of two accretive operators in Banach spaces, Appl. Math. Comput. 283 (2016), 265-281.
- N. Lehdili and A. Moudafi, Combining the proximal algorithm and Tikhonov regularization, Optimization 37 (1996), no. 3, 239-252. https://doi.org/10.1080/02331939608844217
- G. Marino and H. K. Xu, Weak and strong convergence theorems for strict pseudo contractions in Hilbert spaces, J. Math. Anal. Appl. 329 (2007), no. 1, 336-346. https://doi.org/10.1016/j.jmaa.2006.06.055
- O. Nevanlinna and S. Reich, Strong convergence of contraction semigroups and of iter- ative methods for accretive operators in Banach spaces, Israel J. Math. 32 (1979), no. 1, 44-58. https://doi.org/10.1007/BF02761184
- S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 67 (1979), no. 2, 274-276. https://doi.org/10.1016/0022-247X(79)90024-6
- S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980), no. 1, 287-292. https://doi.org/10.1016/0022-247X(80)90323-6
- R. T. Rockafellar, Characterization of the subdifferentials of convex functions, Pacific J. Math. 17 (1966), 497-510. https://doi.org/10.2140/pjm.1966.17.497
- R. T. Rockafellar, Monotone operators and proximal point algorithm, SIAM J. Control Optim. 14 (1976), no. 5, 887-897.
- Y. Song and C. Yang, A note on a paper "A regularization method for the proximal point algorithm", J. Glob. Optim. 43 (2009), no. 1, 171-174. https://doi.org/10.1007/s10898-008-9279-9
- T. M. Tuyen, Strong convergence theorem for a common zero of m-accretive mappings in Banach spaces by viscosity approximation methods, Nonlinear Funct. Anal. Appl. 17 (2012), 187-197.
- H. K. Xu, Iterative algorithms for nonlinear operators, J. Lond. Math. Soc. 66 (2002), no. 1, 240-256. https://doi.org/10.1112/S0024610702003332
- H. K. Xu, A regularization method for the proximal point algorithm, J. Global Optim. 36 (2006), no. 1, 115-125. https://doi.org/10.1007/s10898-006-9002-7
- H. K. Xu, Strong convergence of an iterative method for nonexpansive and accretive operators, J. Math. Anal. Appl. 314 (2006), no. 2, 631-643. https://doi.org/10.1016/j.jmaa.2005.04.082
- Y. Yamada, The hybrid steepest descent method for the variational inequality problem over the intersection of xed point sets of nonexpansive mappings, Inherently parallel algorithms in feasibility and optimization and their applications (Haifa, 2000), 473-504, Stud. Comput. Math., 8, North-Holland, Amsterdam, 2001.
- H. Zegeye and N. Shahzad, Strong convergence theorems for a common zero of a nite family of m-accretive mappings, Nonlinear Anal. 66 (2007), no. 5, 1161-1169. https://doi.org/10.1016/j.na.2006.01.012