DOI QR코드

DOI QR Code

BLOCH-TYPE SPACES ON THE UPPER HALF-PLANE

  • Fu, Xi (Department of Mathematics Shaoxing University) ;
  • Zhang, Junding (Department of Mathematics Shaoxing University)
  • Received : 2016.07.09
  • Accepted : 2016.12.26
  • Published : 2017.07.31

Abstract

We define Bloch-type spaces of ${\mathcal{C}}^1({\mathbb{H}})$ on the upper half plane H and characterize them in terms of weighted Lipschitz functions. We also discuss the boundedness of a composition operator ${\mathcal{C}}_{\phi}$ acting between two Bloch spaces. These obtained results generalize the corresponding known ones to the setting of upper half plane.

Keywords

References

  1. P. Bourgrade and O. Croissant, Heat kernel espansion for a family of stochastic volatility models: ${\delta}$-geometry, Comput. Res. Reposi. (2005), 31-46.
  2. S. Chen, S. Ponnusamy, and A. Rasila, On characterizations of Bloch-type, Hardy-type and Lipschitz-type spaces, Math Z. 279 (2015), no. 1-2, 163-183. https://doi.org/10.1007/s00209-014-1361-z
  3. S. Chen and X. Wang, On harmonic Bloch spaces in the unit ball of ${\mathbb{C}}^n$, Bull. Aust. Math. Soc. 84 (2011), no. 1, 67-78.
  4. B. R. Choe and K. Nam, Double integral characterizations of harmonic Bergman spaces, J. Math. Anal. Appl. 379 (2011), no. 2, 889-909. https://doi.org/10.1016/j.jmaa.2011.02.024
  5. F. Colonna, The Bloch constant of bounded harmonic mappings, Indiana Univ. Math. J. 38 (1989), no. 4, 829-840. https://doi.org/10.1512/iumj.1989.38.38039
  6. K. M. Dyakonov, Equivalent norms on Lipschitz-type spaces of holomorphic functions, Acta Math. 178 (1997), no. 2, 143-167. https://doi.org/10.1007/BF02392692
  7. X. Fu and B. Lu, Some characterizations of harmonic Bloch and Besov spaces, Czechoslovak Math. J. 66 (2016), no. 2, 417-430. https://doi.org/10.1007/s10587-016-0265-y
  8. F. Holland and D. Walsh, Criteria for membership of Bloch space and its subspace, BMOA Math. Ann. 273 (1986), 317-335. https://doi.org/10.1007/BF01451410
  9. S. Li and H. Wulan, Characterizations of ${\alpha}$-Bloch spaces on the unit ball, J. Math. Anal. Appl. 343 (2008), no. 1, 58-63. https://doi.org/10.1016/j.jmaa.2008.01.023
  10. K. Madigan and A. Matheson, Compact composition operators on the Bloch space, Trans. Amer. Math. Soc. 347 (1995), no. 7, 2679-2687. https://doi.org/10.1090/S0002-9947-1995-1273508-X
  11. K. Nam, Lipschitz type characterizations of harmonic Bergman spaces, Bull. Korean Math Soc. 50 (2013), no. 4, 1277-1288. https://doi.org/10.4134/BKMS.2013.50.4.1277
  12. M. Nowak, Bloch space and Mobius invariant Besov spaces on the unit ball of ${\mathbb{C}}^n$, Complex Variables Theory Appl. 44 (2001), no. 1, 1-12. https://doi.org/10.1080/17476930108815358
  13. S. Ohno, K. Stroethoff, and R. Zhao, Weighted composition operators between Bloch-type spaces, Rocky Mountain J. Math. 33 (2003), no. 1, 191-215. https://doi.org/10.1216/rmjm/1181069993
  14. G. Ren and U. Kahler, Weighted Lipschitz continuity and harmonic Bloch and Besov spaces in the real unit ball, Proc. Edinb. Math. Soc. 48 (2005), no. 3, 743-755. https://doi.org/10.1017/S0013091502000020
  15. G. Ren and C. Tu, Bloch spaces in the unit ball of ${\mathbb{C}}^n$, Proc. Amer. Math. Soc. 133 (2005), no. 3, 719-726. https://doi.org/10.1090/S0002-9939-04-07617-8
  16. S. Sharma, A. Sharma, and S. Ahmed, Composition operators between Hardy and Blochtype spaces of the upper half-plane, Bull. Korean Math Soc. 43 (2007), no. 3, 475-482.
  17. R. Yoneda, The harmonic Bloch and Besov spaces by an oscillation, Proc. Edinb. Math. Soc. 45 (2002), no. 1, 229-239. https://doi.org/10.1017/S001309159900142X
  18. R. Zhao, A characterization of Bloch-type spaces on the unit ball of ${\mathbb{C}}^n$, J. Math. Anal. Appl. 330 (2007), no. 1, 291-297. https://doi.org/10.1016/j.jmaa.2006.06.100
  19. K. Zhu, Bloch type spaces of analytic functions, Rocky Mountain J. Math. 23 (1993), no. 3, 1143-1177. https://doi.org/10.1216/rmjm/1181072549
  20. K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Springer-Verlag, New York, 2005.
  21. K. Zhu, Operator Theory in Function Spaces, Marcel Dekker, New York, 1990.