References
-
P. Bourgrade and O. Croissant, Heat kernel espansion for a family of stochastic volatility models:
${\delta}$ -geometry, Comput. Res. Reposi. (2005), 31-46. - S. Chen, S. Ponnusamy, and A. Rasila, On characterizations of Bloch-type, Hardy-type and Lipschitz-type spaces, Math Z. 279 (2015), no. 1-2, 163-183. https://doi.org/10.1007/s00209-014-1361-z
-
S. Chen and X. Wang, On harmonic Bloch spaces in the unit ball of
${\mathbb{C}}^n$ , Bull. Aust. Math. Soc. 84 (2011), no. 1, 67-78. - B. R. Choe and K. Nam, Double integral characterizations of harmonic Bergman spaces, J. Math. Anal. Appl. 379 (2011), no. 2, 889-909. https://doi.org/10.1016/j.jmaa.2011.02.024
- F. Colonna, The Bloch constant of bounded harmonic mappings, Indiana Univ. Math. J. 38 (1989), no. 4, 829-840. https://doi.org/10.1512/iumj.1989.38.38039
- K. M. Dyakonov, Equivalent norms on Lipschitz-type spaces of holomorphic functions, Acta Math. 178 (1997), no. 2, 143-167. https://doi.org/10.1007/BF02392692
- X. Fu and B. Lu, Some characterizations of harmonic Bloch and Besov spaces, Czechoslovak Math. J. 66 (2016), no. 2, 417-430. https://doi.org/10.1007/s10587-016-0265-y
- F. Holland and D. Walsh, Criteria for membership of Bloch space and its subspace, BMOA Math. Ann. 273 (1986), 317-335. https://doi.org/10.1007/BF01451410
-
S. Li and H. Wulan, Characterizations of
${\alpha}$ -Bloch spaces on the unit ball, J. Math. Anal. Appl. 343 (2008), no. 1, 58-63. https://doi.org/10.1016/j.jmaa.2008.01.023 - K. Madigan and A. Matheson, Compact composition operators on the Bloch space, Trans. Amer. Math. Soc. 347 (1995), no. 7, 2679-2687. https://doi.org/10.1090/S0002-9947-1995-1273508-X
- K. Nam, Lipschitz type characterizations of harmonic Bergman spaces, Bull. Korean Math Soc. 50 (2013), no. 4, 1277-1288. https://doi.org/10.4134/BKMS.2013.50.4.1277
-
M. Nowak, Bloch space and Mobius invariant Besov spaces on the unit ball of
${\mathbb{C}}^n$ , Complex Variables Theory Appl. 44 (2001), no. 1, 1-12. https://doi.org/10.1080/17476930108815358 - S. Ohno, K. Stroethoff, and R. Zhao, Weighted composition operators between Bloch-type spaces, Rocky Mountain J. Math. 33 (2003), no. 1, 191-215. https://doi.org/10.1216/rmjm/1181069993
- G. Ren and U. Kahler, Weighted Lipschitz continuity and harmonic Bloch and Besov spaces in the real unit ball, Proc. Edinb. Math. Soc. 48 (2005), no. 3, 743-755. https://doi.org/10.1017/S0013091502000020
-
G. Ren and C. Tu, Bloch spaces in the unit ball of
${\mathbb{C}}^n$ , Proc. Amer. Math. Soc. 133 (2005), no. 3, 719-726. https://doi.org/10.1090/S0002-9939-04-07617-8 - S. Sharma, A. Sharma, and S. Ahmed, Composition operators between Hardy and Blochtype spaces of the upper half-plane, Bull. Korean Math Soc. 43 (2007), no. 3, 475-482.
- R. Yoneda, The harmonic Bloch and Besov spaces by an oscillation, Proc. Edinb. Math. Soc. 45 (2002), no. 1, 229-239. https://doi.org/10.1017/S001309159900142X
-
R. Zhao, A characterization of Bloch-type spaces on the unit ball of
${\mathbb{C}}^n$ , J. Math. Anal. Appl. 330 (2007), no. 1, 291-297. https://doi.org/10.1016/j.jmaa.2006.06.100 - K. Zhu, Bloch type spaces of analytic functions, Rocky Mountain J. Math. 23 (1993), no. 3, 1143-1177. https://doi.org/10.1216/rmjm/1181072549
- K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Springer-Verlag, New York, 2005.
- K. Zhu, Operator Theory in Function Spaces, Marcel Dekker, New York, 1990.