• Title/Summary/Keyword: majorant

Search Result 13, Processing Time 0.023 seconds

CONVERGENCE OF A CONTINUATION METHOD UNDER MAJORANT CONDITIONS

  • Nisha, Shwet;Parida, P.K.;Kumari, Chandni
    • Korean Journal of Mathematics
    • /
    • v.27 no.4
    • /
    • pp.1005-1025
    • /
    • 2019
  • The paper is devoted to study local convergence of a continuation method under the assumption of majorant conditions. The method is used to approximate a zero of an operator in Banach space and is of third order. It is seen that the famous Kantorovich-type and Smale-type conditions are special cases of our majorant conditions. This infers that our result is a generalized one in comparison to results based on Kantorovich-type and Smale-type conditions. Finally a number of numerical examples have been computed to show applicability of the convergence analysis.

LOCAL CONVERGENCE OF THE GAUSS-NEWTON METHOD FOR INJECTIVE-OVERDETERMINED SYSTEMS

  • Amat, Sergio;Argyros, Ioannis Konstantinos;Magrenan, Angel Alberto
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.5
    • /
    • pp.955-970
    • /
    • 2014
  • We present, under a weak majorant condition, a local convergence analysis for the Gauss-Newton method for injective-overdetermined systems of equations in a Hilbert space setting. Our results provide under the same information a larger radius of convergence and tighter error estimates on the distances involved than in earlier studies such us [10, 11, 13, 14, 18]. Special cases and numerical examples are also included in this study.

OSCILLATION CRITERIA OF DIFFERENTIAL EQUATIONS OF SECOND ORDER

  • Kim, Rae Joong
    • Korean Journal of Mathematics
    • /
    • v.19 no.3
    • /
    • pp.309-319
    • /
    • 2011
  • We give sufficient conditions that the homogeneous differential equations : for $t{\geq}t_0$(> 0), $$x^{{\prime}{\prime}}(t)+q(t)x^{\prime}(t)+p(t)x(t)=0,\\x^{{\prime}{\prime}}(t)+q(t)x^{\prime}(t)+F(t,x({\phi}(t)))=0$$, are oscillatory where $0{\leq}{\phi}(t)$, 0 < ${\phi}^{\prime}(t)$, $\lim_{t\to{\infty}}{\phi}(t)={\infty}$. and $F(t,u){\cdot}sgn$ $u{\leq}p(t)|u|$. We obtain comparison theorems.

BLOCH-TYPE SPACES ON THE UPPER HALF-PLANE

  • Fu, Xi;Zhang, Junding
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1337-1346
    • /
    • 2017
  • We define Bloch-type spaces of ${\mathcal{C}}^1({\mathbb{H}})$ on the upper half plane H and characterize them in terms of weighted Lipschitz functions. We also discuss the boundedness of a composition operator ${\mathcal{C}}_{\phi}$ acting between two Bloch spaces. These obtained results generalize the corresponding known ones to the setting of upper half plane.

OSCILLATION AND NONOSCILLATION CRITERIA FOR DIFFERENTIAL EQUATIONS OF SECOND ORDER

  • Kim, RakJoong
    • Korean Journal of Mathematics
    • /
    • v.19 no.4
    • /
    • pp.391-402
    • /
    • 2011
  • We give necessary and sufficient conditions such that the homogeneous differential equations of the type: $$(r(t)x^{\prime}(t))^{\prime}+q(t)x^{\prime}(t)+p(t)x(t)=0$$ are nonoscillatory where $r(t)$ > 0 for $t{\in}I=[{\alpha},{\infty})$, ${\alpha}$ > 0. Under the suitable conditions we show that the above equation is nonoscillatory if and only if for ${\gamma}$ > 0, $$(r(t)x^{\prime}(t))^{\prime}+q(t)x^{\prime}(t)+p(t)x(t-{\gamma})=0$$ is nonoscillatory. We obtain several comparison theorems.

DISCUSSION ON THE ANALYTIC SOLUTIONS OF THE SECOND-ORDER ITERATED DIFFERENTIAL EQUATION

  • Liu, HanZe;Li, WenRong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.4
    • /
    • pp.791-804
    • /
    • 2006
  • This paper is concerned with a second-order iterated differential equation of the form $c_0x'(Z)+c_1x'(z)+c_2x(z)=x(az+bx(z))+h(z)$ with the distinctive feature that the argument of the unknown function depends on the state. By constructing a convergent power series solution of an auxiliary equation, analytic solutions of the original equation are obtained.

GENERALIZED H$\ddot{O}$LDER ESTIMATES FOR THE $\bar{\partial}$-EQUATION ON CONVEX DOMAINS IN $\mathbb{C}^2$

  • Cho, Hong-Rae;Seo, Yeon-Seok
    • East Asian mathematical journal
    • /
    • v.25 no.2
    • /
    • pp.221-227
    • /
    • 2009
  • In this paper, we introduce the generalized H$\ddot{o}$lder space with a majorant function and prove the H$\ddot{o}$lder regularity for solutions of the Cauchy-Riemann equation in the generalized Holder spaces on a bounded convex domain in $\mathbb{C}^2$.

CHEYSHEFF-HALLEY-LIKE METHODS IN BANACH SPACES

  • Argyros, Ioannis-K.
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.1
    • /
    • pp.83-108
    • /
    • 1997
  • Chebysheff-Halley methods are probably the best known cubically convergent iterative procedures for solving nonlinear equa-tions. These methods however require an evaluation of the second Frechet-derivative at each step which means a number of function eval-uations proportional to the cube of the dimension of the space. To re-duce the computational cost we replace the second Frechet derivative with a fixed bounded bilinear operator. Using the majorant method and Newton-Kantorovich type hypotheses we provide sufficient condi-tions for the convergence of our method to a locally unique solution of a nonlinear equation in Banach space. Our method is shown to be faster than Newton's method under the same computational cost. Finally we apply our results to solve nonlinear integral equations appearing in radiative transfer in connection with the problem of determination of the angular distribution of the radiant-flux emerging from a plane radiation field.