DOI QR코드

DOI QR Code

LOCAL CONVERGENCE OF THE GAUSS-NEWTON METHOD FOR INJECTIVE-OVERDETERMINED SYSTEMS

  • Received : 2013.10.02
  • Published : 2014.09.01

Abstract

We present, under a weak majorant condition, a local convergence analysis for the Gauss-Newton method for injective-overdetermined systems of equations in a Hilbert space setting. Our results provide under the same information a larger radius of convergence and tighter error estimates on the distances involved than in earlier studies such us [10, 11, 13, 14, 18]. Special cases and numerical examples are also included in this study.

Keywords

References

  1. S. Amat, S. Busquier, and J. M. Gutierrez, Geometric constructions of iterative functions to solve nonlinear equations, J. Comput. Appl. Math. 157 (2003), no. 1, 197-205. https://doi.org/10.1016/S0377-0427(03)00420-5
  2. J. Appel, E. De Pascale, J. V. Lysenko, and P. P. Zabrejko, New results on Newton-Kantorovich approximations with applications to nonlinear integral equations, Numer. Funct. Anal. Optimiz. 18 (1997), no. 1-2, 1-17.
  3. I. K. Argyros, Computational Theory of Iterative Methods, Studies in Computational Mathematics, 15, Editors: K. Chui and L. Wuytach. Elsevier, 2007.
  4. I. K. Argyros, Concerning the semilocal convergence of Newton's method and convex majorants, Rend. Circ. Mat. Palermo (2) 57 (2008), no. 3, 331-341. https://doi.org/10.1007/s12215-008-0024-5
  5. I. K. Argyros, Concerning the convergence of Newton's method and quadratic majorants, J. Appl. Math. Comput. 29 (2009), no. 1-2, 391-400. https://doi.org/10.1007/s12190-008-0140-6
  6. I. K. Argyros, A semilocal convergence analysis for directional Newton methods, Math. Comp. 80 (2011), no. 273, 327-343.
  7. I. K. Argyros and S. Hilout, Extending the applicability of the Gauss-Newton method under average Lipschitz-conditions, Numer. Algorithms 58 (2011), no. 1, 23-52. https://doi.org/10.1007/s11075-011-9446-9
  8. I. K. Argyros and S. Hilout, Improved local convergence of Newton's method under weak majorant condition, J. Comput. Appl. Math. 236 (2012), no. 7, 1892-1902. https://doi.org/10.1016/j.cam.2011.10.021
  9. I. K. Argyros and S. Hilout, Computational Methods in Nonlinear Analysis, World Scientific Publ. Comp., New Jersey, 2013.
  10. O. P. Ferreira, Local convergence of Newton's method in Banach space from the viewpoint of the majorant principle, IMA J. Numer. Anal. 29 (2009), no. 3, 746-759. https://doi.org/10.1093/imanum/drn036
  11. O. P. Ferreira, Local convergence of Newton's method under majorant condition, J. Comput. Appl. Math. 235 (2011), no. 5, 1515-1522. https://doi.org/10.1016/j.cam.2010.08.038
  12. O. P. Ferreira, M. L. N. Goncalves, and P. R. Oliveira, Local convergence analysis of the Gauss-Newton method under a majorant condition, J. Complexity 27 (2011), no. 1. 111-125. https://doi.org/10.1016/j.jco.2010.09.001
  13. O. P. Ferreira and B. F. Svaiter, Kantorovich's majorants principle for Newton's method, Comput. Optim. Appl. 42 (2009), no. 2, 213-229. https://doi.org/10.1007/s10589-007-9082-4
  14. M. L. N. Goncalves, Local convergence of the Gauss-Newton method for injective-overdetermined systems of equations under a majorant condition, Comput. Math. Appl. 66 (2013), no. 4, 490-499. https://doi.org/10.1016/j.camwa.2013.05.019
  15. J. M. Gutierrez, M. A. Hernandez, and M. A. Salanova, Accessibility of solutions by Newton's method, Inter. J. Comput. Math. 57 (1995), no. 3-4, 239-247. https://doi.org/10.1080/00207169508804427
  16. W. M. A. Haussler, Kantorovich-type convergence analysis for the Gauss-Newton method, Numer. Math. 48 (1986), no. 1, 119-125. https://doi.org/10.1007/BF01389446
  17. L. V. Kantorovich and G. P. Akilov, Functional Analysis in Normed Spaces, Pergamon Press, Oxford, 1964.
  18. C. Li and K. F. Ng, Majorizing functions and convergence of the Gauss-Newton method for convex composite optimization, SIAM J. Optim. 18 (2007), no. 2, 613-692. https://doi.org/10.1137/06065622X
  19. A. A. Magrenan, Estudio de la dinamica del metodo de Newton amortiguado, PhD Thesis, Servicio de Publicaciones, Universidad de La Rioja, 2013.
  20. P. D. Proinov, General local convergence theory for a class of iterative processes and its applications to Newton's method, J. Complexity 25 (2009), no. 1, 38-62. https://doi.org/10.1016/j.jco.2008.05.006
  21. W. C. Rheinboldt, An adaptive continuation process for solving systems of nonlinear equations, Polish Academy of Science, Banach Ctr. Publ. 3 (1977), no. 1, 129-142.
  22. X. Wang, Convergence on Newton's method and inverse function theorem in Banach space, Math. Comput. 68 (1999), no. 225, 169-186. https://doi.org/10.1090/S0025-5718-99-00999-0