• Title/Summary/Keyword: Xenograft model

Search Result 135, Processing Time 0.033 seconds

Effects of Cheongpyesagan-tang and YKK012 on in vitro and in vivo Colon Cancer Cell Growth with and without CPT-11 (청폐사간탕(淸肺瀉肝湯)과 YKK012의 항암제 CPT-11과 병용투여 시 대장암 성장억제에 미치는 효과)

  • Ahn, Hun-Mo;Han, Sang-Yong;Kim, Ji-Hoon;Rho, Tae-Won;Chong, Myong-Soo;Kim, Yun-Kyung
    • The Korea Journal of Herbology
    • /
    • v.30 no.1
    • /
    • pp.33-42
    • /
    • 2015
  • Objectives : The aim of this study was to evaluate the antitumor effects of Cheongpyesagan-tang(CST) and YKK012 on colon cancer. Methods : MTT assay was used to evaluate the cytotoxicity of Single herbs and combinations of CST and YKK012 on murine colon cancer cells, Colon 38. To explain effects of apoptosis in colon cancer, we performed the western blot. Effects of CST and YKK012 on antitumor activity of CPT-11 using the murine colon38 allograft tumor in BDF1 mice. Results : Single herbs and combinations of CST and YKK012 was tested in vitro, Rhei Radix (RH) and Scutellariae Radix (SC) and YKK012 showed dose-response cytotoxicity on Colon 38. This might be due to the apoptosis, as we see Bax and Caspase-3, which are apoptotic factors, was expressed in RH and SC treated cells. YKK012 also showed increased expression of Caspase-3. In mouse colorectal cancer xenograft model of colon38 cells, herbal combinations showed tendencies of tumor regression, but was not significant. Furthermore, because toxicity was observed in CST group, we reduced the dose of CST for the next experiment. The anti-tumor effects of herbal combinations were insufficient to be used as single anti-tumor agent. With simultaneous usage of CPT-11, contrary to that CST showed no synergistic effects, YKK012 which was composed by the combination of four $ER{\beta}$ selective herbs, significantly reduced the size of tumor and Bax expression was increased. Conclusions : We suggest YKK012 can be a effective cancer adjuvant therapy with CPT-11 on colon cancer.

Histologic Changes of the Immunologically Untreated Xenogenic Valved Conduit (면역학적 처리 없는 이종 심장 판막 도관의 조직학적 변화에 관한 연구)

  • Sung, Ki-Ick;Seo, Jeong-Wook;Kim, Won-Gon
    • Journal of Chest Surgery
    • /
    • v.40 no.1 s.270
    • /
    • pp.1-7
    • /
    • 2007
  • Backgound: It has been shown that the endothelium of cardiac valves and adjacent great vessels have a reduced immune reaction compared to other vessels. We investigated the clinical feasibility of using immunologically untreated xenogenic valves, in a pig-to-goat pulmonary valve conduit implantation model. Material and Method: Porcine pulmonary valve conduits were prepared without specific immunologic treatment and implanted into the right ventricular outflow tract of goats while undergoing cardiopulmonary bypass. Two goats each were assigned to the following observation time intervals: one day, one week, three months, six months and twelve months. Echo-cardiographic examinations were performed prior to sacrifice of the goat to evaluate pulmonary valve function. After the xenograft specimens were retrieved, histological changes were evaluated microscopically. Result: Ten of the twelve animals survived the predetermined observation time intervals. Aneurysmal dilatations, of the anterior wall of the implanted pulmonary artery, were observed at each of three and twelve month-survival animals. A variable degree of pulmonary valve regurgitation was observed on echocardiography. However, valve stenosis, thrombotic occlusion and vegetation were not seen. Microscopically, the nuclei of the donor tissue disappeared as a result of pyknosis and karyolysis; however the three components of the implanted xenografts (the pulmonary artery, the valve and the infundibulum) were gradually replaced by host cells over time, while maintaining their structural integrity. Conclusion: Immunologically untreated xenogenic pulmonary valve conduits were replaced by host cells with few observed clinical problems in a pig to goat pulmonary valve implantation model. Therefore, they might be an alternative bioprosthesis option.

Rg3-enriched red ginseng extracts enhance apoptosis in CoCl2-stimulated breast cancer cells by suppressing autophagy

  • Yun-Jeong Jeong;Mi-Hee Yu;Yuna Cho;Min-Young Jo;Kwon-Ho Song;Yung Hyun Choi;Taeg Kyu Kwon;Jong-Young Kwak;Young-Chae Chang
    • Journal of Ginseng Research
    • /
    • v.48 no.1
    • /
    • pp.31-39
    • /
    • 2024
  • Background: Ginsenoside Rg3, a primary bioactive component of red ginseng, has anti-cancer effects. However, the effects of Rg3-enriched ginseng extract (Rg3RGE) on apoptosis and autophagy in breast cancer have not yet been investigated. In the present study, we explored the anti-tumor effects of Rg3RGE on breast cancer cells stimulated CoCl2, a mimetic of the chronic hypoxic response, and determined the operative mechanisms of action. Methods: The inhibitory mechanisms of Rg3RGE on breast cancer cells, such as apoptosis, autophagy and ROS levels, were detected both in vitro. To determine the anti-cancer effects of Rg3RGE in vivo, the cancer xenograft model was used. Results: Rg3RGE suppressed CoCl2-induced spheroid formation and cell viability in 3D culture of breast cancer cells. Rg3RGE promoted apoptosis by increasing cleaved caspase 3 and cleaved PARP and decreasing Bcl2 under the hypoxia mimetic conditions. Further, we identified that Rg3RGE promoted apoptosis by inhibiting lysosomal degradation of autophagosome contents in CoCl2-induced autophagy. We further identified that Rg3RGE-induced apoptotic cell death and autophagy inhibition was mediated by increased intracellular ROS levels. Similarly, in the in vivo xenograft model, Rg3RGE induced apoptosis and inhibited cell proliferation and autophagy. Conclusion: Rg3RGE-stimulated ROS production promotes apoptosis and inhibits protective autophagy under hypoxic conditions. Autophagosome accumulation is critical to the apoptotic effects of Rg3RGE. The in vivo findings also demonstrate that Rg3RGE inhibits breast cancer cell growth, suggesting that Rg3RGE has potential as potential as a putative breast cancer therapeutic.

Analysis of SARS-CoV-2 Mutations after Nirmatrelvir Treatment in a Lung Cancer Xenograft Mouse Model

  • Bo Min Kang;Dongbum Kim;Jinsoo Kim;Kyeongbin Baek;Sangkyu Park;Ha-Eun Shin;Myeong-Heon Lee;Minyoung Kim;Suyeon Kim;Younghee Lee;Hyung-Joo Kwon
    • Biomolecules & Therapeutics
    • /
    • v.32 no.4
    • /
    • pp.481-491
    • /
    • 2024
  • Paxlovid is the first approved oral treatment for coronavirus disease 2019 and includes nirmatrelvir, a protease inhibitor targeting the main protease (Mpro) of SARS-CoV-2, as one of the key components. While some specific mutations emerged in Mpro were revealed to significantly reduce viral susceptibility to nirmatrelvir in vitro, there is no report regarding resistance to nirmatrelvir in patients and animal models for SARS-CoV-2 infection yet. We recently developed xenograft tumors derived from Calu-3 cells in immunodeficient mice and demonstrated extended replication of SARS-CoV-2 in the tumors. In this study, we investigated the effect of nirmatrelvir administration on SARS-CoV-2 replication. Treatment with nirmatrelvir after virus infection significantly reduced the replication of the parental SARS-CoV-2 and SARS-CoV-2 Omicron at 5 days post-infection (dpi). However, the virus titers were completely recovered at the time points of 15 and 30 dpi. The virus genomes in the tumors at 30 dpi were analyzed to investigate whether nirmatrelvir-resistant mutant viruses had emerged during the extended replication of SARS-CoV-2. Various mutations in several genes including ORF1ab, ORF3a, ORF7a, ORF7b, ORF8, and N occurred in the SARS-CoV-2 genome; however, no mutations were induced in the Mpro sequence by a single round of nirmatrelvir treatment, and none were observed even after two rounds of treatment. The parental SARS-CoV-2 and its sublineage isolates showed similar IC50 values of nirmatrelvir in Vero E6 cells. Therefore, it is probable that inducing viral resistance to nirmatrelvir in vivo is challenging differently from in vitro passage.

Cordycepin Enhanced Therapeutic Potential of Gemcitabine against Cholangiocarcinoma via Downregulating Cancer Stem-Like Properties

  • Hong Kyu Lee;Yun-Jung Na;Su-Min Seong;Dohee Ahn;Kyung-Chul Choi
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.368-378
    • /
    • 2024
  • Cordycepin, a valuable bioactive component isolated from Cordyceps militaris, has been reported to possess anti-cancer potential and the property to enhance the effects of chemotherapeutic agents in various types of cancers. However, the ability of cordycepin to chemosensitize cholangiocarcinoma (CCA) cells to gemcitabine has not yet been evaluated. The current study was performed to evaluate the above, and the mechanisms associated with it. The study analyzed the effects of cordycepin in combination with gemcitabine on the cancer stem-like properties of the CCA SNU478 cell line, including its anti-apoptotic, migratory, and antioxidant effects. In addition, the combination of cordycepin and gemcitabine was evaluated in the CCA xenograft model. The cordycepin treatment significantly decreased SNU478 cell viability and, in combination with gemcitabine, additively reduced cell viability. The cordycepin and gemcitabine co-treatment significantly increased the Annexin V+ population and downregulated B-cell lymphoma 2 (Bcl-2) expression, suggesting that the decreased cell viability in the cordycepin+gemcitabine group may result from an increase in apoptotic death. In addition, the cordycepin and gemcitabine co-treatment significantly reduced the migratory ability of SNU478 cells in the wound healing and trans-well migration assays. It was observed that the cordycepin and gemcitabine cotreatment reduced the CD44highCD133high population in SNU478 cells and the expression level of sex determining region Y-box 2 (Sox-2), indicating the downregulation of the cancer stem-like population. Cordycepin also enhanced oxidative damage mediated by gemcitabine in MitoSOX staining associated with the upregulated Kelch like ECH Associated Protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) expression ratio. In the SNU478 xenograft model, co-administration of cordycepin and gemcitabine additively delayed tumor growth. These results indicate that cordycepin potentiates the chemotherapeutic property of gemcitabine against CCA, which results from the downregulation of its cancer-stem-like properties. Hence, the combination therapy of cordycepin and gemcitabine may be a promising therapeutic strategy in the treatment of CCA.

American ginseng attenuates azoxymethane/dextran sodium sulfate-induced colon carcinogenesis in mice

  • Yu, Chunhao;Wen, Xiao-Dong;Zhang, Zhiyu;Zhang, Chun-Feng;Wu, Xiao-Hui;Martin, Adiba;Du, Wei;He, Tong-Chuan;Wang, Chong-Zhi;Yuan, Chun-Su
    • Journal of Ginseng Research
    • /
    • v.39 no.1
    • /
    • pp.14-21
    • /
    • 2015
  • Background: Colorectal cancer is a leading cause of cancer-related death, and inflammatory bowel disease is a risk factor for this malignancy. We previously reported colon cancer chemoprevention potential using American ginseng (AG) in a xenograft mice model. However, the nude mouse model is not a gut-specific colon carcinogenesis animal model. Methods: In this study, an experimental colitis and colitis-associated colorectal carcinogenesis mouse model, chemically induced by azoxymethane/dextran sodium sulfate (DSS) was established and the effects of oral AG were evaluated. The contents of representative ginseng saponins in the extract were determined. Results: AG significantly reduced experimental colitis measured by the disease activity index scores. This suppression of the experimental colitis was not only evident during DSS treatment, but also very obvious after the cessation of DSS, suggesting that the ginseng significantly promoted recovery from the colitis. Consistent with the anti-inflammation data, we showed that ginseng very significantly attenuated azoxymethane/DSS-induced colon carcinogenesis by reducing the colon tumor number and tumor load. The ginseng also effectively suppressed DSS-induced proinflammatory cytokines activation using an enzyme-linked immunosorbent assay array, in which 12 proinflammatory cytokine levels were assessed, and this effect was supported subsequently by real-time polymerase chain reaction data. Conclusion: AG, as a candidate of botanical-based colon cancer chemoprevention, should be further investigated for its potential clinical utility.

Adoptive Cell Therapy of Melanoma with Cytokine-induced Killer Cells

  • Kim, Ji Sung;Kim, Yong Guk;Pyo, Minji;Lee, Hong Kyung;Hong, Jin Tae;Kim, Youngsoo;Han, Sang-Bae
    • IMMUNE NETWORK
    • /
    • v.15 no.2
    • /
    • pp.58-65
    • /
    • 2015
  • Melanoma is the most aggressive skin cancer and its incidence is gradually increasing worldwide. Patients with metastatic melanoma have a very poor prognosis (estimated 5-year survival rate of <16%). In the last few years, several drugs have been approved for malignant melanoma, such as tyrosine kinase inhibitors and immune checkpoint blockades. Although new therapeutic agents have improved progression-free and overall survival, their use is limited by drug resistance and drug-related toxicity. At the same time, adoptive cell therapy of metastatic melanoma with tumor-infiltrating lymphocytes has shown promising results in preclinical and clinical studies. In this review, we summarize the currently available drugs for treatment of malignant melanoma. In addition, we suggest cytokine-induced killer (CIK) cells as another candidate approach for adoptive cell therapy of melanoma. Our preclinical study and several previous studies have shown that CIK cells have potent anti-tumor activity against melanomas in vitro and in an in vivo human tumor xenograft model without any toxicity.

Norcantharidin Anti-Angiogenesis Activity Possibly through an Endothelial Cell Pathway in Human Colorectal Cancer

  • Yu, Tao;Hou, Fenggang;Liu, Manman;Zhou, Lihong;Li, Dan;Liu, Jianrong;Fan, Zhongze;Li, Qi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.2
    • /
    • pp.499-503
    • /
    • 2012
  • The present study was based on the unexpected discovery that norcantharidin exerted anti-angiogenesis activity when effects on growth of human colon cancer were studied. The aim was to further verify this finding and explore possible mechanisms using a tumor xenograft model in nude mice. We confirmed that norcantharidin (5 or 15 mg/kg) could inhibit angiogenesis of human colon cancer in vivo. In vitro, crossing river assay, cell adhesion assay and tube formation assay indicated that NCTD could reduce the migration, adhesion and vascular network tube formation ability of HUVECs. At the same time, the expression levels of VEGF and VEGFR-2 proteins which play important roles in angiogenesis were reduced as examined by western blotting analysis. Taken together, the results firstly showed NCTD could inhibit angiogenesis of human colon cancer in vivo, probably associated with effects on migration, adhesion and vascular network tube formation of HUVECs and expression levels of VEGF and VEGFR-2 proteins.

ER membrane protein complex subunit 6 (EMC6) is a novel tumor suppressor in gastric cancer

  • Wang, Xiaokun;Xia, Yan;Xu, Chentong;Lin, Xin;Xue, Peng;Zhu, Shijie;Bai, Yun;Chen, Yingyu
    • BMB Reports
    • /
    • v.50 no.8
    • /
    • pp.411-416
    • /
    • 2017
  • The endoplasmic reticulum (ER) membrane protein complex subunit 6 (EMC6) is a novel human autophagy-related molecule. Here, using tissue microarray and immunohistochemistry, we report that EMC6 protein is lost or reduced in glandular cells of patients with gastric adenocarcinoma, compared to normal stomach mucosa. Overexpression of EMC6 in gastric cancer cells inhibited cell growth, migration, invasion, and induced apoptosis and cell cycle arrest at S-phase. Further investigation suggested that EMC6 overexpression in BGC823 human adenocarcinoma gastric cancer cells reduced tumorigenicity in a xenograft model, demonstrating that EMC6 has the characteristics of a tumor suppressor. This is the first study to show that EMC6 induces cell death in gastric cancer cells. The molecular mechanism of how EMC6 functions as a tumor suppressor needs to be further explored.

Toll-like Receptor 5 Agonist Inhibition of Growth of A549 Lung Cancer Cells in Vivo in a Myd88 Dependent Manner

  • Zhou, Shi-Xiang;Li, Feng-Sheng;Qiao, Yu-Lei;Zhang, Xue-Qing;Wang, Zhi-Dong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2807-2812
    • /
    • 2012
  • The purpose of this study was to examine the effect of a Toll-like receptor 5 (TLR5) agonist, CBLB502, on the growth and radiosensitivity of A549 lung cancer cells in vivo. Expression of myeloid differentiation factor 88 (MyD88) or TLR5 was stably knocked down in human lung cancer cells (A549) using lentivirus expressing short hairpin RNA targeting human MyD88 or TLR5. Lack of MyD88 or TLR5 expression enhanced tumor growth in mouse xenografts of A549 lung cancer cells. CBLB502 inhibited the growth of A549 lung cancer cells, not A549-MyD88-KD cells in vivo in the murine xenograft model. Our results showed that the inhibition of A549 by CBLB502 in vivo was realized through regulating the expression of neutrophil recruiting cytokines and neutrophil infiltration. Finally, we found that activation of TLR5 signaling did not affect the radiosensitivity of tumors in vivo.