DOI QR코드

DOI QR Code

Adoptive Cell Therapy of Melanoma with Cytokine-induced Killer Cells

  • Kim, Ji Sung (College of Pharmacy, Chungbuk National University) ;
  • Kim, Yong Guk (College of Pharmacy, Chungbuk National University) ;
  • Pyo, Minji (College of Pharmacy, Chungbuk National University) ;
  • Lee, Hong Kyung (College of Pharmacy, Chungbuk National University) ;
  • Hong, Jin Tae (College of Pharmacy, Chungbuk National University) ;
  • Kim, Youngsoo (College of Pharmacy, Chungbuk National University) ;
  • Han, Sang-Bae (College of Pharmacy, Chungbuk National University)
  • Received : 2014.12.26
  • Accepted : 2015.02.25
  • Published : 2015.04.30

Abstract

Melanoma is the most aggressive skin cancer and its incidence is gradually increasing worldwide. Patients with metastatic melanoma have a very poor prognosis (estimated 5-year survival rate of <16%). In the last few years, several drugs have been approved for malignant melanoma, such as tyrosine kinase inhibitors and immune checkpoint blockades. Although new therapeutic agents have improved progression-free and overall survival, their use is limited by drug resistance and drug-related toxicity. At the same time, adoptive cell therapy of metastatic melanoma with tumor-infiltrating lymphocytes has shown promising results in preclinical and clinical studies. In this review, we summarize the currently available drugs for treatment of malignant melanoma. In addition, we suggest cytokine-induced killer (CIK) cells as another candidate approach for adoptive cell therapy of melanoma. Our preclinical study and several previous studies have shown that CIK cells have potent anti-tumor activity against melanomas in vitro and in an in vivo human tumor xenograft model without any toxicity.

Keywords

References

  1. Gordon, R. 2013. Skin cancer: an overview of epidemiology and risk factors. Semin. Oncol. Nurs. 29: 160-169.
  2. Lomas, A., J. Leonardi-Bee, and F. Bath-Hextall. 2012. A systematic review of worldwide incidence of nonmelanoma skin cancer. Br. J. Dermatol. 166: 1069-1080. https://doi.org/10.1111/j.1365-2133.2012.10830.x
  3. Gray-Schopfer, V., C. Wellbrock, and R. Marais. 2007. Melanoma biology and new targeted therapy. Nature 445: 851-857. https://doi.org/10.1038/nature05661
  4. Marks, R. 2000. Epidemiology of melanoma. Clin. Exp. Dermatol. 25: 459-463. https://doi.org/10.1046/j.1365-2230.2000.00693.x
  5. Whiteman, D. C., C. A. Whiteman, and A. C. Green. 2001. Childhood sun exposure as a risk factor for melanoma: a systematic review of epidemiologic studies. Cancer Causes Control 12: 69-82. https://doi.org/10.1023/A:1008980919928
  6. Pollock, P. M., U. L. Harper, K. S. Hansen, L. M. Yudt, M. Stark, C. M. Robbins, T. Y. Moses, G. Hostetter, U. Wagner, J. Kakareka, G. Salem, T. Pohida, P. Heenan, P. Duray, O. Kallioniemi, N. K. Hayward, J. M. Trent, and P. S. Meltzer. 2003. High frequency of BRAF mutations in nevi. Nat. Genet. 33: 19-20.
  7. Siegel, R., J. Ma, Z. Zou, and A. Jemal. 2014. Cancer statistics, 2014. CA Cancer J. Clin. 64: 9-29. https://doi.org/10.3322/caac.21208
  8. Ko, J. M., and D. E. Fisher. 2011. A new era: melanoma genetics and therapeutics. J. Pathol. 223: 241-250.
  9. Tsao, H., V. Goel, H. Wu, G. Yang, and F. G. Haluska. 2004. Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma. J. Invest Dermatol. 122: 337-341. https://doi.org/10.1046/j.0022-202X.2004.22243.x
  10. Davies, H., G. R. Bignell, C. Cox, P. Stephens, S. Edkins, S. Clegg, J. Teague, H. Woffendin, M. J. Garnett, W. Bottomley, N. Davis, E. Dicks, R. Ewing, Y. Floyd, K. Gray, S. Hall, R. Hawes, J. Hughes, V. Kosmidou, A. Menzies, C. Mould, A. Parker, C. Stevens, S. Watt, S. Hooper, R. Wilson, H. Jayatilake, B. A. Gusterson, C. Cooper, J. Shipley, D. Hargrave, K. Pritchard-Jones, N. Maitland, G. Chenevix-Trench, G. J. Riggins, D. D. Bigner, G. Palmieri, A. Cossu, A. Flanagan, A. Nicholson, J. W. Ho, S. Y. Leung, S. T. Yuen, B. L. Weber, H. F. Seigler, T. L. Darrow, H. Paterson, R. Marais, C. J. Marshall, R. Wooster, M. R. Stratton, and P. A. Futreal. 2002. Mutations of the BRAF gene in human cancer. Nature 417: 949-954. https://doi.org/10.1038/nature00766
  11. Curtin, J. A., J. Fridlyand, T. Kageshita, H. N. Patel, K. J. Busam, H. Kutzner, K. H. Cho, S. Aiba, E. B. Brocker, P. E. LeBoit, D. Pinkel, and B. C. Bastian. 2005. Distinct sets of genetic alterations in melanoma. N. Engl. J. Med. 353: 2135-2147. https://doi.org/10.1056/NEJMoa050092
  12. Chapman, P. B., A. Hauschild, C. Robert, J. B. Haanen, P. Ascierto, J. Larkin, R. Dummer, C. Garbe, A. Testori, M. Maio, D. Hogg, P. Lorigan, C. Lebbe, T. Jouary, D. Schadendorf, A. Ribas, S. J. O'Day, J. A. Sosman, J. M. Kirkwood, A. M. Eggermont, B. Dreno, K. Nolop, J. Li, B. Nelson, J. Hou, R. J. Lee, K. T. Flaherty, and G. A. McArthur ; BRIM-3 Study Group. 2011. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364: 2507-2516. https://doi.org/10.1056/NEJMoa1103782
  13. Straussman, R., T. Morikawa, K. Shee, M. Barzily-Rokni, Z. R. Qian, J. Du, A. Davis, M. M. Mongare, J. Gould, D. T. Frederick, Z. A. Cooper, P. B. Chapman, D. B. Solit, A. Ribas, R. S. Lo, K. T. Flaherty, S. Ogino, J. A. Wargo, and T. R. Golub. 2012. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487: 500-504. https://doi.org/10.1038/nature11183
  14. Sosman, J. A., K. B. Kim, L. Schuchter, R. Gonzalez, A. C. Pavlick, J. S. Weber, G. A. McArthur, T. E. Hutson, S. J. Moschos, K. T. Flaherty, P. Hersey, R. Kefford, D. Lawrence, I. Puzanov, K. D. Lewis, R. K. Amaravadi, B. Chmielowski, H. J. Lawrence, Y. Shyr, F. Ye, J. Li, K. B. Nolop, R. J. Lee, A. K. Joe, and A. Ribas. 2012. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N. Engl. J. Med. 366: 707-714. https://doi.org/10.1056/NEJMoa1112302
  15. Sullivan, R. J., and K. T. Flaherty. 2013. Resistance to BRAFtargeted therapy in melanoma. Eur. J. Cancer 49: 1297-1304. https://doi.org/10.1016/j.ejca.2012.11.019
  16. Parry, R. V., J. M. Chemnitz, K. A. Frauwirth, A. R. Lanfranco, I. Braunstein, S. V. Kobayashi, P. S. Linsley, C. B. Thompson, and J. L. Riley. 2005. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol. Cell. Biol. 25: 9543-9553. https://doi.org/10.1128/MCB.25.21.9543-9553.2005
  17. Schneider, H., J. Downey, A. Smith, B. H. Zinselmeyer, C. Rush, J. M. Brewer, B. Wei, N. Hogg, P. Garside, and C. E. Rudd. 2006. Reversal of the TCR stop signal by CTLA-4. Science 313: 1972-1975. https://doi.org/10.1126/science.1131078
  18. Pardoll, D. M. 2012. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12: 252-264. https://doi.org/10.1038/nrc3239
  19. Laurent, S., P. Queirolo, S. Boero, S. Salvi, P. Piccioli, S. Boccardo, S. Minghelli, A. Morabito, V. Fontana, G. Pietra, P. Carrega, N. Ferrari, F. Tosetti, L. J. Chang, M. C. Mingari, G. Ferlazzo, A. Poggi, and M. P. Pistillo. 2013. The engagement of CTLA-4 on primary melanoma cell lines induces antibody-dependent cellular cytotoxicity and TNF-alpha production. J. Transl. Med. 11: 108. https://doi.org/10.1186/1479-5876-11-108
  20. Ishida, Y., Y. Agata, K. Shibahara, and T. Honjo. 1992. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 11: 3887-3895.
  21. Freeman, G. J., A. J. Long, Y. Iwai, K. Bourque, T. Chernova, H. Nishimura, L. J. Fitz, N. Malenkovich, T. Okazaki, M. C. Byrne, H. F. Horton, L. Fouser, L. Carter, V. Ling, M. R. Bowman, B. M. Carreno, M. Collins, C. R. Wood, and T. Honjo. 2000. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192: 1027-1034. https://doi.org/10.1084/jem.192.7.1027
  22. Keir, M. E., S. C. Liang, I. Guleria, Y. E. Latchman, A. Qipo, L. A. Albacker, M. Koulmanda, G. J. Freeman, M. H. Sayegh, and A. H. Sharpe. 2006. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J. Exp. Med. 203: 883-895. https://doi.org/10.1084/jem.20051776
  23. Chapon, M., C. Randriamampita, E. Maubec, C. Badoual, S. Fouquet, S. F. Wang, E. Marinho, D. Farhi, M. Garcette, S. Jacobelli, A. Rouquette, A. Carlotti, A. Girod, A. Prevost-Blondel, A. Trautmann, M. F. Avril, and N. Bercovici. 2011. Progressive upregulation of PD-1 in primary and metastatic melanomas associated with blunted TCR signaling in infiltrating T lymphocytes. J. Invest. Dermatol. 131: 1300-1307. https://doi.org/10.1038/jid.2011.30
  24. Hamid, O., C. Robert, A. Daud, F. S. Hodi, W. J. Hwu, R. Kefford, J. D. Wolchok, P. Hersey, R. W. Joseph, J. S. Weber, R. Dronca, T. C. Gangadhar, A. Patnaik, H. Zarour, A. M. Joshua, K. Gergich, J. Elassaiss-Schaap, A. Algazi, C. Mateus, P. Boasberg, P. C. Tumeh, B. Chmielowski, S. W. Ebbinghaus, X. N. Li, S. P. Kang, and A. Ribas. 2013. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N. Engl. J. Med. 369: 134-144. https://doi.org/10.1056/NEJMoa1305133
  25. Kirkwood, J. M., P. Lorigan, P. Hersey, A. Hauschild, C. Robert, D. McDermott, M. A. Marshall, J. Gomez-Navarro, J. Q. Liang, and C. A. Bulanhagui. 2010. Phase II trial of tremelimumab (CP-675,206) in patients with advanced refractory or relapsed melanoma. Clin. Cancer Res. 16: 1042-1048. https://doi.org/10.1158/1078-0432.CCR-09-2033
  26. Topalian, S. L., F. S. Hodi, J. R. Brahmer, S. N. Gettinger, D. C. Smith, D. F. McDermott, J. D. Powderly, R. D. Carvajal, J. A. Sosman, M. B. Atkins, P. D. Leming, D. R. Spigel, S. J. Antonia, L. Horn, C. G. Drake, D. M. Pardoll, L. Chen, W. H. Sharfman, R. A. Anders, J. M. Taube, T. L. McMiller, H. Xu, A. J. Korman, M. Jure-Kunkel, S. Agrawal, D. McDonald, G. D. Kollia, A. Gupta, J. M. Wigginton, and M. Sznol. 2012. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366: 2443-2454. https://doi.org/10.1056/NEJMoa1200690
  27. Kwon, E. D., C. G. Drake, H. I. Scher, K. Fizazi, A. Bossi, A. J. van den Eertwegh, M. Krainer, N. Houede, R. Santos, H. Mahammedi, S. Ng, M. Maio, F. A. Franke, S. Sundar, N. Agarwal, A. M. Bergman, T. E. Ciuleanu, E. Korbenfeld, L. Sengelov, S. Hansen, C. Logothetis, T. M. Beer, M. B. McHenry, P. Gagnier, D. Liu, and W. R. Gerritsen ; CA184-043 Investigators. 2014. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double- blind, phase 3 trial. Lancet Oncol. 15: 700-712. https://doi.org/10.1016/S1470-2045(14)70189-5
  28. Teply, B. A., and E. J. Lipson. 2014. Identification and management of toxicities from immune checkpoint-blocking drugs. Oncology (Williston. Park) Suppl 3: 30-38.
  29. Rosenberg, S. A. 2011. Cell transfer immunotherapy for metastatic solid cancer--what clinicians need to know. Nat. Rev. Clin. Oncol. 8: 577-585. https://doi.org/10.1038/nrclinonc.2011.116
  30. Dudley, M. E., J. C. Yang, R. Sherry, M. S. Hughes, R. Royal, U. Kammula, P. F. Robbins, J. Huang, D. E. Citrin, S. F. Leitman, J. Wunderlich, N. P. Restifo, A. Thomasian, S. G. Downey, F. O. Smith, J. Klapper, K. Morton, C. Laurencot, D. E. White, and S. A. Rosenberg. 2008. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J. Clin. Oncol. 26: 5233-5239. https://doi.org/10.1200/JCO.2008.16.5449
  31. Heylmann, D., M. Bauer, H. Becker, G. S. van, N. Bacher, K. Steinbrink, and B. Kaina. 2013. Human $CD4^+$$CD25^+$ regulatory T cells are sensitive to low dose cyclophosphamide: implications for the immune response. PLoS One 8: e83384. https://doi.org/10.1371/journal.pone.0083384
  32. Suzuki, E., V. Kapoor, A. S. Jassar, L. R. Kaiser, and S. M. Albelda. 2005. Gemcitabine selectively eliminates splenic Gr-$Gr-1^+$/$CD11b^+$ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin. Cancer Res. 11: 6713-6721. https://doi.org/10.1158/1078-0432.CCR-05-0883
  33. Phan, G. Q. and S. A. Rosenberg. 2013. Adoptive cell transfer for patients with metastatic melanoma: the potential and promise of cancer immunotherapy. Cancer Control 20: 289-297. https://doi.org/10.1177/107327481302000406
  34. Cormier, J. N., A. Abati, P. Fetsch, Y. M. Hijazi, S. A. Rosenberg, F. M. Marincola, and S. L. Topalian. 1998. Comparative analysis of the in vivo expression of tyrosinase, MART-1/Melan-A, and gp100 in metastatic melanoma lesions: implications for immunotherapy. J. Immunother. 21: 27-31. https://doi.org/10.1097/00002371-199801000-00003
  35. van der, B. P., C. Traversari, P. Chomez, C. Lurquin, P. E. De, B. J. Van den Eynde, A. Knuth, and T. Boon. 2007. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. J. Immunol. 178: 2617-2621.
  36. Morgan, R. A., M. E. Dudley, J. R. Wunderlich, M. S. Hughes, J. C. Yang, R. M. Sherry, R. E. Royal, S. L. Topalian, U. S. Kammula, N. P. Restifo, Z. Zheng, A. Nahvi, C. R. de Vries, L. J. Rogers-Freezer, S. A. Mavroukakis, and S. A. Rosenberg. 2006. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314: 126-129. https://doi.org/10.1126/science.1129003
  37. Johnson, L. A., R. A. Morgan, M. E. Dudley, L. Cassard, J. C. Yang, M. S. Hughes, U. S. Kammula, R. E. Royal, R. M. Sherry, J. R. Wunderlich, C. C. Lee, N. P. Restifo, S. L. Schwarz, A. P. Cogdill, R. J. Bishop, H. Kim, C. C. Brewer, S. F. Rudy, C. VanWaes, J. L. Davis, A. Mathur, R. T. Ripley, D. A. Nathan, C. M. Laurencot, and S. A. Rosenberg. 2009. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114: 535-546. https://doi.org/10.1182/blood-2009-03-211714
  38. Miller, J. S. 2001. The biology of natural killer cells in cancer, infection, and pregnancy. Exp. Hematol. 29: 1157-1168. https://doi.org/10.1016/S0301-472X(01)00696-8
  39. Seliger, B. 2008. Different regulation of MHC class I antigen processing components in human tumors. J. Immunotoxicol. 5: 361-367. https://doi.org/10.1080/15476910802482870
  40. Seliger, B., T. Cabrera, F. Garrido, and S. Ferrone. 2002. HLA class I antigen abnormalities and immune escape by malignant cells. Semin. Cancer Biol. 12: 3-13.
  41. Geller, M. A., and J. S. Miller. 2011. Use of allogeneic NK cells for cancer immunotherapy. Immunotherapy 3: 1445-1459. https://doi.org/10.2217/imt.11.131
  42. Miller, J. S., Y. Soignier, A. Panoskaltsis-Mortari, S. A. McNearney, G. H. Yun, S. K. Fautsch, D. McKenna, C. Le, T. E. Defor, L. J. Burns, P. J. Orchard, B. R. Blazar, J. E. Wagner, A. Slungaard, D. J. Weisdorf, I. J. Okazaki, and P. B. McGlave. 2005. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105: 3051-3057. https://doi.org/10.1182/blood-2004-07-2974
  43. Parkhurst, M. R., J. P. Riley, M. E. Dudley, and S. A. Rosenberg. 2011. Adoptive transfer of autologous natural killer cells leads to high levels of circulating natural killer cells but does not mediate tumor regression. Clin. Cancer Res. 17: 6287-6297. https://doi.org/10.1158/1078-0432.CCR-11-1347
  44. Schmidt-Wolf, G. D., R. S. Negrin, and I. G. Schmidt-Wolf. 1997. Activated T cells and cytokine-induced $CD3^+$ $56^+$ killer cells. Ann. Hematol. 74: 51-56. https://doi.org/10.1007/s002770050257
  45. Schmidt-Wolf, I. G., R. S. Negrin, H. P. Kiem, K. G. Blume, and I. L. Weissman. 1991. Use of a SCID mouse/human lymphoma model to evaluate cytokine-induced killer cells with potent antitumor cell activity. J. Exp. Med. 174: 139-149. https://doi.org/10.1084/jem.174.1.139
  46. Franceschetti, M., A. Pievani, G. Borleri, L. Vago, K. Fleischhauer, J. Golay, and M. Introna. 2009. Cytokine-induced killer cells are terminally differentiated activated $CD8^+$ cytotoxic T-EMRA lymphocytes. Exp. Hematol. 37: 616-628. https://doi.org/10.1016/j.exphem.2009.01.010
  47. Verneris, M. R., J. Baker, M. Edinger, and R. S. Negrin. 2002. Studies of ex vivo activated and expanded $CD8^+$ NK-T cells in humans and mice. J. Clin. Immunol. 22: 131-136. https://doi.org/10.1023/A:1015415928521
  48. Verneris, M. R., M. Karami, J. Baker, A. Jayaswal, and R. S. Negrin. 2004. Role of NKG2D signaling in the cytotoxicity of activated and expanded $CD8^+$ T cells. Blood 103: 3065-3072. https://doi.org/10.1182/blood-2003-06-2125
  49. Pievani, A., G. Borleri, D. Pende, L. Moretta, A. Rambaldi, J. Golay, and M. Introna. 2011. Dual-functional capability of $CD3^+$ $CD56^+$ CIK cells, a T-cell subset that acquires NK function and retains TCR-mediated specific cytotoxicity. Blood 118: 3301-3310. https://doi.org/10.1182/blood-2011-02-336321
  50. Alvarnas, J. C., Y. C. Linn, E. G. Hope, and R. S. Negrin. 2001. Expansion of cytotoxic $CD3^+$ $CD56^+$ cells from peripheral blood progenitor cells of patients undergoing autologous hematopoietic cell transplantation. Biol. Blood Marrow Transplant. 7: 216-222. https://doi.org/10.1053/bbmt.2001.v7.pm11349808
  51. Schmidt-Wolf, I. G., P. Lefterova, V. Johnston, C. Scheffold, M. Csipai, B. A. Mehta, T. Tsuruo, D. Huhn, and R. S. Negrin. 1996. Sensitivity of multidrug-resistant tumor cell lines to immunologic effector cells. Cell. Immunol. 169: 85-90. https://doi.org/10.1006/cimm.1996.0094
  52. Zhang, Y. S., F. J. Yuan, G. F. Jia, J. F. Zhang, L. Y. Hu, L. Huang, J. Wang, and Z. Q. Dai. 2005. CIK cells from patients with HCC possess strong cytotoxicity to multidrug- resistant cell line Bel-7402/R. World J. Gastroenterol. 11: 3339-3345. https://doi.org/10.3748/wjg.v11.i22.3339
  53. Liu, P., L. Chen, and X. Huang. 2009. The antitumor effects of CIK cells combined with docetaxel against drug-resistant lung adenocarcinoma cell line SPC-A1/DTX in vitro and in vivo. Cancer Biother. Radiopharm. 24: 91-98. https://doi.org/10.1089/cbr.2008.0533
  54. Zhao, Q., H. Zhang, Y. Li, J. Liu, X. Hu, and L. Fan. 2010. Anti-tumor effects of CIK combined with oxaliplatin in human oxaliplatin-resistant gastric cancer cells in vivo and in vitro. J. Exp. Clin. Cancer Res. 29: 118. https://doi.org/10.1186/1756-9966-29-118
  55. Zhu, H. H., K. L. Xu, X. Y. Pan, J. Q. Liu, F. X. Chen, and Y. H. Huang. 2003. [Specific anti-leukemic cell effect mediated by dendritic cells pulsed with chronic myelogenous leukemia lysate antigen in vitro]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 11: 278-281.
  56. Zhang, S., S. J. Jiang, C. Q. Zhang, H. M. Wang, and C. X. Bai. 2005. Antitumour activities of cytokine-induced killer cells and dendritic cells in vitro and in vivo. Chin. Med. J. (Engl.) 118: 1308-1312.
  57. Wang, F. S., M. X. Liu, B. Zhang, M. Shi, Z. Y. Lei, W. B. Sun, Q. Y. Du, and J. M. Chen. 2002. Antitumor activities of human autologous cytokine-induced killer (CIK) cells against hepatocellular carcinoma cells in vitro and in vivo. World J. Gastroenterol. 8: 464-468. https://doi.org/10.3748/wjg.v8.i3.464
  58. Kornacker, M., G. Moldenhauer, M. Herbst, E. Weilguni, F. Tita-Nwa, C. Harter, M. Hensel, and A. D. Ho. 2006. Cytokine-induced killer cells against autologous CLL: direct cytotoxic effects and induction of immune accessory molecules by interferon-gamma. Int. J. Cancer 119: 1377-1382. https://doi.org/10.1002/ijc.21994
  59. Kim, H. M., J. Lim, S. K. Park, J. S. Kang, K. Lee, C. W. Lee, K. H. Lee, M. J. Yun, K. H. Yang, G. Han, S. W. Kwon, Y. Kim, and S. B. Han. 2007. Antitumor activity of cytokine-induced killer cells against human lung cancer. Int. Immunopharmacol. 7: 1802-1807. https://doi.org/10.1016/j.intimp.2007.08.016
  60. Kim, H. M., J. S. Kang, J. Lim, S. K. Park, K. Lee, Y. D. Yoon, C. W. Lee, K. H. Lee, G. Han, K. H. Yang, Y. J. Kim, Y. Kim, and S. B. Han. 2007. Inhibition of human ovarian tumor growth by cytokine-induced killer cells. Arch. Pharm. Res. 30: 1464-1470. https://doi.org/10.1007/BF02977372
  61. Kim, J. S., I. S. Chung, S. H. Lim, Y. Park, M. J. Park, J. Y. Kim, Y. G. Kim, J. T. Hong, Y. Kim, and S. B. Han. 2014. Preclinical and clinical studies on cytokine-induced killer cells for the treatment of renal cell carcinoma. Arch. Pharm. Res. 37: 559-566. https://doi.org/10.1007/s12272-014-0381-x
  62. Sun, S., X. M. Li, X. D. Li, and W. S. Yang. 2005. Studies on inducing apoptosis effects and mechanism of CIK cells for MGC-803 gastric cancer cell lines. Cancer Biother. Radiopharm. 20: 173-180. https://doi.org/10.1089/cbr.2005.20.173
  63. Gammaitoni, L., L. Giraudo, V. Leuci, M. Todorovic, G. Mesiano, F. Picciotto, A. Pisacane, A. Zaccagna, M. G. Volpe, S. Gallo, D. Caravelli, E. Giacone, T. Venesio, A. Balsamo, Y. Pignochino, G. Grignani, F. Carnevale-Schianca, M. Aglietta, and D. Sangiolo. 2013. Effective activity of cytokine-induced killer cells against autologous metastatic melanoma including cells with stemness features. Clin. Cancer Res. 19: 4347-4358. https://doi.org/10.1158/1078-0432.CCR-13-0061
  64. Dean, M., T. Fojo, and S. Bates. 2005. Tumour stem cells and drug resistance. Nat. Rev. Cancer 5: 275-284. https://doi.org/10.1038/nrc1590
  65. Tailor, N. K., H. B. Lee, and M. Sharma. 2013. Effective melanoma inhibition by synthetic pentacyclic triterpenoid 2-(3-phenylprop-2-en-1-ylidene)-22beta-hydroxy-3-oxoolean-12-en-28-oic acid: an in vitro and in vivo study. J. Environ. Pathol. Toxicol. Oncol. 32: 59-72. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2013007125
  66. Schott, S., H. Niessner, T. Sinnberg, S. Venturelli, A. Berger, K. Ikenberg, J. Villanueva, F. Meier, C. Garbe, and C. Busch. 2012. Cytotoxicity of new duplex drugs linking 3'-C-ethynylcytidine and 5-fluor-2'-deoxyuridine against human melanoma cells. Int. J. Cancer 131: 2165-2174. https://doi.org/10.1002/ijc.27476
  67. Choi, W. K., M. I. El-Gamal, H. S. Choi, D. Baek, and C. H. Oh. 2011. New diarylureas and diarylamides containing 1,3,4-triarylpyrazole scaffold: Synthesis, antiproliferative evaluation against melanoma cell lines, ERK kinase inhibition, and molecular docking studies. Eur. J. Med. Chem. 46: 5754-5762. https://doi.org/10.1016/j.ejmech.2011.08.013
  68. Jakel, C. E., and I. G. Schmidt-Wolf. 2014. An update on new adoptive immunotherapy strategies for solid tumors with cytokine-induced killer cells. Expert. Opin. Biol. Ther. 14: 905-916. https://doi.org/10.1517/14712598.2014.900537

Cited by

  1. Profiling the dynamic expression of checkpoint molecules on cytokine-induced killer cells from non-small-cell lung cancer patients vol.7, pp.28, 2015, https://doi.org/10.18632/oncotarget.9871
  2. Enhancing the treatment effect on melanoma by heat shock protein 70-peptide complexes purified from human melanoma cell lines vol.36, pp.3, 2015, https://doi.org/10.3892/or.2016.4947
  3. Updates in Therapy for Advanced Melanoma vol.8, pp.1, 2015, https://doi.org/10.3390/cancers8010017
  4. Immunotherapy for advanced melanoma: future directions vol.8, pp.2, 2016, https://doi.org/10.2217/imt.15.111