DOI QR코드

DOI QR Code

Rg3-enriched red ginseng extracts enhance apoptosis in CoCl2-stimulated breast cancer cells by suppressing autophagy

  • Yun-Jeong Jeong (Research Institute of Biomedical Engineering and Department of cell Biology, Catholic University of Daegu School of Medicine) ;
  • Mi-Hee Yu (Research Institute of Biomedical Engineering and Department of cell Biology, Catholic University of Daegu School of Medicine) ;
  • Yuna Cho (Research Institute of Biomedical Engineering and Department of cell Biology, Catholic University of Daegu School of Medicine) ;
  • Min-Young Jo (Research Institute of Biomedical Engineering and Department of cell Biology, Catholic University of Daegu School of Medicine) ;
  • Kwon-Ho Song (Research Institute of Biomedical Engineering and Department of cell Biology, Catholic University of Daegu School of Medicine) ;
  • Yung Hyun Choi (Department of Biochemistry, College of Korean Medicine, Dong-Eui University) ;
  • Taeg Kyu Kwon (Department of Immunology, School of Medicine, Keimyung University) ;
  • Jong-Young Kwak (Department of Pharmacology, School of Medicine, Ajou University) ;
  • Young-Chae Chang (Research Institute of Biomedical Engineering and Department of cell Biology, Catholic University of Daegu School of Medicine)
  • Received : 2022.12.14
  • Accepted : 2023.06.06
  • Published : 2024.01.01

Abstract

Background: Ginsenoside Rg3, a primary bioactive component of red ginseng, has anti-cancer effects. However, the effects of Rg3-enriched ginseng extract (Rg3RGE) on apoptosis and autophagy in breast cancer have not yet been investigated. In the present study, we explored the anti-tumor effects of Rg3RGE on breast cancer cells stimulated CoCl2, a mimetic of the chronic hypoxic response, and determined the operative mechanisms of action. Methods: The inhibitory mechanisms of Rg3RGE on breast cancer cells, such as apoptosis, autophagy and ROS levels, were detected both in vitro. To determine the anti-cancer effects of Rg3RGE in vivo, the cancer xenograft model was used. Results: Rg3RGE suppressed CoCl2-induced spheroid formation and cell viability in 3D culture of breast cancer cells. Rg3RGE promoted apoptosis by increasing cleaved caspase 3 and cleaved PARP and decreasing Bcl2 under the hypoxia mimetic conditions. Further, we identified that Rg3RGE promoted apoptosis by inhibiting lysosomal degradation of autophagosome contents in CoCl2-induced autophagy. We further identified that Rg3RGE-induced apoptotic cell death and autophagy inhibition was mediated by increased intracellular ROS levels. Similarly, in the in vivo xenograft model, Rg3RGE induced apoptosis and inhibited cell proliferation and autophagy. Conclusion: Rg3RGE-stimulated ROS production promotes apoptosis and inhibits protective autophagy under hypoxic conditions. Autophagosome accumulation is critical to the apoptotic effects of Rg3RGE. The in vivo findings also demonstrate that Rg3RGE inhibits breast cancer cell growth, suggesting that Rg3RGE has potential as potential as a putative breast cancer therapeutic.

Keywords

Acknowledgement

This research was supported by the Korean Society of Ginseng (2021) and National Research Foundation of Korea (NRF) grants funded by the Korean government (MSIT) (2022R1A4A5032702)

References

  1. Torre LA, Islami F, Siegel RL, Ward EM, Jemal A. Global cancer in women: burden and trends. Cancer Epidemiol Biomarkers Prev 2017;26(4):444-57. https://doi.org/10.1158/1055-9965.EPI-16-0858
  2. Moo TA, Sanford R, Dang C, Morrow M. Overview of breast cancer therapy. PET Clin 2018;13(3):339-54. https://doi.org/10.1016/j.cpet.2018.02.006
  3. Paraskevi T. Quality of life outcomes in patients with breast cancer. Oncol Rev 2012;6(1):e2.
  4. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol 2007;35(4):495-516. https://doi.org/10.1080/01926230701320337
  5. Bursch W, Ellinger A, Gerner C, Frohwein U, Schulte-Hermann R. Programmed cell death (PCD). Apoptosis, autophagic PCD, or others? Ann N Y Acad Sci 2000;926:1-12. https://doi.org/10.1111/j.1749-6632.2000.tb05594.x
  6. Su M, Mei Y, Sinha S. Role of the crosstalk between autophagy and apoptosis in cancer. J Oncol 2013;2013:102735.
  7. Pan H, Wang Y, Na K, Wang Y, Wang L, Li Z, et al. Autophagic flux disruption contributes to Ganoderma lucidum polysaccharide-induced apoptosis in human colorectal cancer cells via MAPK/ERK activation. Cell Death Dis 2019;10(6):456.
  8. Su Z, Yang Z, Xu Y, Chen Y, Yu Q. Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer 2015;14:48.
  9. Zaarour RF, Azakir B, Hajam EY, Nawafleh H, Zeinelabdin NA, Engelsen AST, et al. Role of hypoxia-mediated autophagy in tumor cell death and survival. Cancers (Basel). 2021;13(3).
  10. Lee JI, Park KS, Cho IH. Panax ginseng: a candidate herbal medicine for autoimmune disease. J Ginseng Res 2019;43(3):342-8. https://doi.org/10.1016/j.jgr.2018.10.002
  11. Kim JH. Pharmacological and medical applications of Panax ginseng and ginsenosides: a review for use in cardiovascular diseases. J Ginseng Res 2018;42(3):264-9. https://doi.org/10.1016/j.jgr.2017.10.004
  12. Zou M, Wang J, Gao J, Han H, Fang Y. Phosphoproteomic analysis of the antitumor effects of ginsenoside Rg3 in human breast cancer cells. Oncol Lett 2018;15(3):2889-98. https://doi.org/10.3892/ol.2017.7654
  13. Hwang SK, Jeong YJ, Cho HJ, Park YY, Song KH, Chang YC. Rg3-enriched red ginseng extract promotes lung cancer cell apoptosis and mitophagy by ROS production. J Ginseng Res 2022;46(1):138-46. https://doi.org/10.1016/j.jgr.2021.05.005
  14. Kim BM, Kim DH, Park JH, Surh YJ, Na HK. Ginsenoside Rg3 inhibits constitutive activation of NF-kappaB signaling in human breast cancer (MDA-MB231) cells: ERK and akt as potential upstream targets. J Cancer Prev 2014;19(1):23-30. https://doi.org/10.15430/JCP.2014.19.1.23
  15. Peng Y, Zhang R, Yang X, Zhang Z, Kang N, Bao L, et al. Ginsenoside Rg3 suppresses the proliferation of prostate cancer cell line PC3 through ROS-induced cell cycle arrest. Oncol Lett 2019;17(1):1139-45.
  16. Shan K, Deng Y, Du Z, Yue P, Yang S. Examination of combined treatment of ginsenoside Rg3 and 5-fluorouracil in lung adenocarcinoma cells. Comput Math Methods Med 2022;2022:2813142.
  17. Bian S, Zhao Y, Li F, Lu S, Wang S, Bai X, et al. 20(S)-Ginsenoside Rg3 promotes HeLa cell apoptosis by regulating autophagy. Molecules 2019;24(20).
  18. Jeong D, Irfan M, Kim SD, Kim S, Oh JH, Park CK, et al. Ginsenoside Rg3-enriched red ginseng extract inhibits platelet activation and in vivo thrombus formation. J Ginseng Res 2017;41(4):548-55. https://doi.org/10.1016/j.jgr.2016.11.003
  19. Owada S, Ito K, Endo H, Shida Y, Okada C, Nezu T, et al. An adaptation system to avoid apoptosis via autophagy under hypoxic conditions in pancreatic cancer cells. Anticancer Res 2017;37(9):4927-34.
  20. Yoshii SR, Mizushima N. Monitoring and measuring autophagy. Int J Mol Sci 2017;18(9).
  21. Song W, Wang F, Savini M, Ake A, di Ronza A, Sardiello M, et al. TFEB regulates lysosomal proteostasis. Hum Mol Genet 2013;22(10):1994-2009. https://doi.org/10.1093/hmg/ddt052
  22. Jung SN, Yang WK, Kim J, Kim HS, Kim EJ, Yun H, et al. Reactive oxygen species stabilize hypoxia-inducible factor-1 alpha protein and stimulate transcriptional activity via AMP-activated protein kinase in DU145 human prostate cancer cells. Carcinogenesis 2008;29(4):713-21. https://doi.org/10.1093/carcin/bgn032
  23. Chang KC, Liu PF, Chang CH, Lin YC, Chen YJ, Shu CW. The interplay of autophagy and oxidative stress in the pathogenesis and therapy of retinal degenerative diseases. Cell Biosci 2022;12(1):1.
  24. Semenza GL. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 2010;29(5):625-34. https://doi.org/10.1038/onc.2009.441
  25. Choi YJ, Choi H, Cho CH, Park JW. Red ginseng deregulates hypoxia-induced genes by dissociating the HIF-1 dimer. J Nat Med 2011;65(2):344-52. https://doi.org/10.1007/s11418-010-0504-8
  26. Shi L, Pi Y, Luo C, Zhang C, Tan D, Meng X. In vitro inhibitory activities of six gypenosides on human liver cancer cell line HepG2 and possible role of HIF1-alpha pathway in them. Chem Biol Interact 2015;238:48-54. https://doi.org/10.1016/j.cbi.2015.06.004
  27. Kim EJ, Kwon KA, Lee YE, Kim JH, Kim SH, Kim JH. Korean Red Ginseng extract reduces hypoxia-induced epithelial-mesenchymal transition by repressing NF-kappaB and ERK1/2 pathways in colon cancer. J Ginseng Res 2018;42(3): 288-97. https://doi.org/10.1016/j.jgr.2017.03.008
  28. Folkerts H, Hilgendorf S, Vellenga E, Bremer E, Wiersma VR. The multifaceted role of autophagy in cancer and the microenvironment. Med Res Rev 2019;39(2):517-60. https://doi.org/10.1002/med.21531
  29. Filomeni G, Desideri E, Cardaci S, Rotilio G, Ciriolo MR. Under the ROS…thiol network is the principal suspect for autophagy commitment. Autophagy 2010;6(7):999-1005. https://doi.org/10.4161/auto.6.7.12754
  30. Su Q, Zheng B, Wang CY, Yang YZ, Luo WW, Ma SM, et al. Oxidative stress induces neuronal apoptosis through suppressing transcription factor EB phosphorylation at Ser467. Cell Physiol Biochem 2018;46(4):1536-54. https://doi.org/10.1159/000489198
  31. Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB, Sak K, et al. Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomolecules 2019;9(11).