DOI QR코드

DOI QR Code

Cordycepin Enhanced Therapeutic Potential of Gemcitabine against Cholangiocarcinoma via Downregulating Cancer Stem-Like Properties

  • Hong Kyu Lee (Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University) ;
  • Yun-Jung Na (Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University) ;
  • Su-Min Seong (Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University) ;
  • Dohee Ahn (Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University) ;
  • Kyung-Chul Choi (Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University)
  • Received : 2023.11.07
  • Accepted : 2024.01.12
  • Published : 2024.05.01

Abstract

Cordycepin, a valuable bioactive component isolated from Cordyceps militaris, has been reported to possess anti-cancer potential and the property to enhance the effects of chemotherapeutic agents in various types of cancers. However, the ability of cordycepin to chemosensitize cholangiocarcinoma (CCA) cells to gemcitabine has not yet been evaluated. The current study was performed to evaluate the above, and the mechanisms associated with it. The study analyzed the effects of cordycepin in combination with gemcitabine on the cancer stem-like properties of the CCA SNU478 cell line, including its anti-apoptotic, migratory, and antioxidant effects. In addition, the combination of cordycepin and gemcitabine was evaluated in the CCA xenograft model. The cordycepin treatment significantly decreased SNU478 cell viability and, in combination with gemcitabine, additively reduced cell viability. The cordycepin and gemcitabine co-treatment significantly increased the Annexin V+ population and downregulated B-cell lymphoma 2 (Bcl-2) expression, suggesting that the decreased cell viability in the cordycepin+gemcitabine group may result from an increase in apoptotic death. In addition, the cordycepin and gemcitabine co-treatment significantly reduced the migratory ability of SNU478 cells in the wound healing and trans-well migration assays. It was observed that the cordycepin and gemcitabine cotreatment reduced the CD44highCD133high population in SNU478 cells and the expression level of sex determining region Y-box 2 (Sox-2), indicating the downregulation of the cancer stem-like population. Cordycepin also enhanced oxidative damage mediated by gemcitabine in MitoSOX staining associated with the upregulated Kelch like ECH Associated Protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) expression ratio. In the SNU478 xenograft model, co-administration of cordycepin and gemcitabine additively delayed tumor growth. These results indicate that cordycepin potentiates the chemotherapeutic property of gemcitabine against CCA, which results from the downregulation of its cancer-stem-like properties. Hence, the combination therapy of cordycepin and gemcitabine may be a promising therapeutic strategy in the treatment of CCA.

Keywords

Acknowledgement

This work was supported by the Basic Research Lab Program (2022R1A4A1025557) through the National Research Foundation (NRF) of Korea, funded by the Ministry of Science and ICT. In addition, this study was also supported by "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE; 2021RIS-001) in 2023.

References

  1. Alabraba, E., Joshi, H., Bird, N., Griffin, R., Sturgess, R., Stern, N., Sieberhagen, C., Cross, T., Camenzuli, A., Davis, R., Evans, J., O'Grady, E., Palmer, D., Diaz-Nieto, R., Fenwick, S., Poston, G. and Malik, H. (2019) Increased multimodality treatment options has improved survival for Hepatocellular carcinoma but poor survival for biliary tract cancers remains unchanged. Eur. J. Surg. Oncol. 45, 1660-1667. https://doi.org/10.1016/j.ejso.2019.04.002
  2. Asakawa, H., Koizumi, H., Koike, A., Takahashi, M., Wu, W., Iwase, H., Fukuda, M. and Ohta, T. (2010) Prediction of breast cancer sensitivity to neoadjuvant chemotherapy based on status of DNA damage repair proteins. Breast Cancer Res. 12, R17.
  3. Ashraf, S. A., Elkhalifa, A. E. O., Siddiqui, A. J., Patel, M., Awadelkareem, A. M., Snoussi, M., Ashraf, M. S., Adnan, M. and Hadi, S. (2020) Cordycepin for health and wellbeing: a potent bioactive metabolite of an entomopathogenic cordyceps medicinal fungus and its nutraceutical and therapeutic potential. Molecules 25, 2735.
  4. Babaei, G., Khadem Ansari, M. H., Aziz, S. G. and Bazl, M. R. (2020) Alantolactone inhibits stem-like cell phenotype, chemoresistance and metastasis in PC3 cells through STAT3 signaling pathway. Res. Pharm. Sci. 15, 551-562. https://doi.org/10.4103/1735-5362.301340
  5. Babu, S. P. P., Venkatabalasubramanian, S., Munisankar, S. R. and Thiyagaraj, A. (2022) Cancer stem cell markers interplay with chemoresistance in triple negative breast cancer: a therapeutic perspective. Bull. Cancer 109, 960-971. https://doi.org/10.1016/j.bulcan.2022.05.007
  6. Banales, J. M., Marin, J. J. G., Lamarca, A., Rodrigues, P. M., Khan, S. A., Roberts, L. R., Cardinale, V., Carpino, G., Andersen, J. B., Braconi, C., Calvisi, D. F., Perugorria, M. J., Fabris, L., Boulter, L., Macias, R. I. R., Gaudio, E., Alvaro, D., Gradilone, S. A., Strazzabosco, M., Marzioni, M., Coulouarn, C., Fouassier, L., Raggi, C., Invernizzi, P., Mertens, J. C., Moncsek, A., Rizvi, S., Heimbach, J., Koerkamp, B. G., Bruix, J., Forner, A., Bridgewater, J., Valle, J. W. and Gores, G. J. (2020) Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat. Rev. Gastroenterol. Hepatol. 17, 557-588. https://doi.org/10.1038/s41575-020-0310-z
  7. Bertuccio, P., Malvezzi, M., Carioli, G., Hashim, D., Boffetta, P., ElSerag, H. B., La Vecchia, C. and Negri, E. (2019) Global trends in mortality from intrahepatic and extrahepatic cholangiocarcinoma. J. Hepatol. 71, 104-114. https://doi.org/10.1016/j.jhep.2019.03.013
  8. Bi, Y., Li, H., Yi, D., Sun, Y., Bai, Y., Zhong, S., Song, Y., Zhao, G. and Chen, Y. (2018) Cordycepin augments the chemosensitivity of human glioma cells to temozolomide by activating AMPK and inhibiting the AKT signaling pathway. Mol. Pharm. 15, 4912-4925. https://doi.org/10.1021/acs.molpharmaceut.8b00551
  9. Bordoloi, D., Harsha, C., Padmavathi, G., Banik, K., Sailo, B. L., Roy, N. K., Girisa, S., Thakur, K. K., Khwairakpam, A. D., Chinnathambi, A., Alahmadi, T. A., Alharbi, S. A., Shakibaei, M. and Kunnumakkara, A. B. (2022) Loss of TIPE3 reduced the proliferation, survival and migration of lung cancer cells through inactivation of Akt/mTOR, NF-kappaB, and STAT-3 signaling cascades. Life Sci. 293, 120332.
  10. Brivio, S., Cadamuro, M., Strazzabosco, M. and Fabris, L. (2017) Tumor reactive stroma in cholangiocarcinoma: the fuel behind cancer aggressiveness. World J. Hepatol. 9, 455-468. https://doi.org/10.4254/wjh.v9.i9.455
  11. Cadamuro, M., Brivio, S., Spirli, C., Joplin, R. E., Strazzabosco, M. and Fabris, L. (2017) Autocrine and paracrine mechanisms promoting chemoresistance in cholangiocarcinoma. Int. J. Mol. Sci. 18, 149.
  12. Cardinale, V., Renzi, A., Carpino, G., Torrice, A., Bragazzi, M. C., Giuliante, F., DeRose, A. M., Fraveto, A., Onori, P., Napoletano, C., Franchitto, A., Cantafora, A., Grazi, G., Caporaso, N., D'Argenio, G., Alpini, G., Reid, L. M., Gaudio, E. and Alvaro, D. (2015) Profiles of cancer stem cell subpopulations in cholangiocarcinomas. Am. J. Pathol. 185, 1724-1739. https://doi.org/10.1016/j.ajpath.2015.02.010
  13. Cheng, Z., He, W., Zhou, X., Lv, Q., Xu, X., Yang, S., Zhao, C. and Guo, L. (2011) Cordycepin protects against cerebral ischemia/reperfusion injury in vivo and in vitro. Eur. J. Pharmacol. 664, 20-28. https://doi.org/10.1016/j.ejphar.2011.04.052
  14. Chong, S. J., Low, I. C. and Pervaiz, S. (2014) Mitochondrial ROS and involvement of Bcl-2 as a mitochondrial ROS regulator. Mitochondrion 19 Pt A, 39-48. https://doi.org/10.1016/j.mito.2014.06.002
  15. Dong, S., Liang, S., Cheng, Z., Zhang, X., Luo, L., Li, L., Zhang, W., Li, S., Xu, Q., Zhong, M., Zhu, J., Zhang, G. and Hu, S. (2022) ROS/PI3K/Akt and Wnt/beta-catenin signalings activate HIF-1alpha-induced metabolic reprogramming to impart 5-fluorouracil resistance in colorectal cancer. J. Exp. Clin. Cancer Res. 41, 15.
  16. El Amrani, M., Corfiotti, F., Corvaisier, M., Vasseur, R., Fulbert, M., Skrzypczyk, C., Deshorgues, A. C., Gnemmi, V., Tulasne, D., Lahdaoui, F., Vincent, A., Pruvot, F. R., Van Seuningen, I., Huet, G. and Truant, S. (2019) Gemcitabine-induced epithelial-mesenchymal transition-like changes sustain chemoresistance of pancreatic cancer cells of mesenchymal-like phenotype. Mol. Carcinog. 58, 1985-1997. https://doi.org/10.1002/mc.23090
  17. Esposti, M. D., Hatzinisiriou, I., McLennan, H. and Ralph, S. (1999) Bcl-2 and mitochondrial oxygen radicals. New approaches with reactive oxygen species-sensitive probes. J. Biol. Chem. 274, 29831-29837. https://doi.org/10.1074/jbc.274.42.29831
  18. Ferreira, R. J., dos Santos, D. J. and Ferreira, M. J. (2015) P-glycoprotein and membrane roles in multidrug resistance. Future Med. Chem. 7, 929-946. https://doi.org/10.4155/fmc.15.36
  19. Gao, Y., Chen, D. L., Zhou, M., Zheng, Z. S., He, M. F., Huang, S., Liao, X. Z. and Zhang, J. X. (2020) Cordycepin enhances the chemosensitivity of esophageal cancer cells to cisplatin by inducing the activation of AMPK and suppressing the AKT signaling pathway. Cell Death Dis. 11, 866.
  20. Go, R. E., Lee, H. K., Kim, C. W., Kim, S. and Choi, K. C. (2022) A fungicide, fenhexamid, is involved in the migration and angiogenesis in breast cancer cells expressing estrogen receptors. Life Sci. 305, 120754.
  21. Guo, Z., Chen, W., Dai, G. and Huang, Y. (2020) Cordycepin suppresses the migration and invasion of human liver cancer cells by downregulating the expression of CXCR4. Int. J. Mol. Med. 45, 141-150.
  22. Hagmann, W., Jesnowski, R. and Lohr, J. M. (2010) Interdependence of gemcitabine treatment, transporter expression, and resistance in human pancreatic carcinoma cells. Neoplasia 12, 740-747. https://doi.org/10.1593/neo.10576
  23. Hueng, D. Y., Hsieh, C. H., Cheng, Y. C., Tsai, W. C. and Chen, Y. (2017) Cordycepin inhibits migration of human glioblastoma cells by affecting lysosomal degradation and protein phosphatase activation. J. Nutr. Biochem. 41, 109-116. https://doi.org/10.1016/j.jnutbio.2016.12.008
  24. Jia, Y., Gu, D., Wan, J., Yu, B., Zhang, X., Chiorean, E. G., Wang, Y. and Xie, J. (2019) The role of GLI-SOX2 signaling axis for gemcitabine resistance in pancreatic cancer. Oncogene 38, 1764-1777. https://doi.org/10.1038/s41388-018-0553-0
  25. Jiang, Q., Lou, Z., Wang, H. and Chen, C. (2019) Antimicrobial effect and proposed action mechanism of cordycepin against Escherichia coli and Bacillus subtilis. J. Microbiol. 57, 288-297. https://doi.org/10.1007/s12275-019-8113-z
  26. Kashyap, T., Pramanik, K. K., Nath, N., Mishra, P., Singh, A. K., Nagini, S., Rana, A. and Mishra, R. (2018) Crosstalk between Raf-MEK-ERK and PI3K-Akt-GSK3beta signaling networks promotes chemoresistance, invasion/migration and stemness via expression of CD44 variants (v4 and v6) in oral cancer. Oral. Oncol. 86, 234-243. https://doi.org/10.1016/j.oraloncology.2018.09.028
  27. Kim, C. W., Lee, H. K., Nam, M. W., Lee, G. and Choi, K. C. (2022) The role of KiSS1 gene on the growth and migration of prostate cancer and the underlying molecular mechanisms. Life Sci. 310, 121009.
  28. Lee, H. K., Nam, M. W., Go, R. E., Koo, J., Kim, T. H., Park, J. E. and Choi, K. C. (2023) TGF-beta2 antisense oligonucleotide enhances T-cell mediated anti-tumor activities by IL-2 via attenuation of fibrotic reaction in a humanized mouse model of pancreatic ductal adenocarcinoma. Biomed. Pharmacother. 159, 114212.
  29. Li, H. B., Chen, J. K., Su, Z. X., Jin, Q. L., Deng, L. W., Huang, G. and Shen, J. N. (2021) Cordycepin augments the chemosensitivity of osteosarcoma to cisplatin by activating AMPK and suppressing the AKT signaling pathway. Cancer Cell Int. 21, 706.
  30. Lindner, P., Rizell, M. and Hafstrom, L. (2015) The impact of changed strategies for patients with cholangiocarcinoma in this millenium. HPB Surg. 2015, 736049.
  31. Liu, T., Zhu, G., Yan, W., Lv, Y., Wang, X., Jin, G., Cui, M., Lin, Z. and Ren, X. (2020) Cordycepin inhibits cancer cell proliferation and angiogenesis through a DEK interaction via ERK signaling in cholangiocarcinoma. J. Pharmacol. Exp. Ther. 373, 279-289. https://doi.org/10.1124/jpet.119.263202
  32. Mukherjee, A. G. and Gopalakrishnan, A. V. (2023) The mechanistic insights of the antioxidant Keap1-Nrf2 pathway in oncogenesis: a deadly scenario. Med. Oncol. 40, 248.
  33. Mukherjee, N., Schwan, J. V., Fujita, M., Norris, D. A. and Shellman, Y. G. (2015) Alternative treatments for melanoma: targeting BCL2 family members to de-bulk and kill cancer stem cells. J. Invest. Dermatol. 135, 2155-2161. https://doi.org/10.1038/jid.2015.145
  34. Obama, K., Satoh, S., Hamamoto, R., Sakai, Y., Nakamura, Y. and Furukawa, Y. (2008) Enhanced expression of RAD51 associating protein-1 is involved in the growth of intrahepatic cholangiocarcinoma cells. Clin. Cancer Res. 14, 1333-1339. https://doi.org/10.1158/1078-0432.CCR-07-1381
  35. Pan, S. T., Li, Z. L., He, Z. X., Qiu, J. X. and Zhou, S. F. (2016) Molecular mechanisms for tumour resistance to chemotherapy. Clin. Exp. Pharmacol. Physiol. 43, 723-737. https://doi.org/10.1111/1440-1681.12581
  36. Paterson, R. R. (2008) Cordyceps: a traditional Chinese medicine and another fungal therapeutic biofactory? Phytochemistry 69, 1469-1495. https://doi.org/10.1016/j.phytochem.2008.01.027
  37. Pelicano, H., Carney, D. and Huang, P. (2004) ROS stress in cancer cells and therapeutic implications. Drug Resist. Updat. 7, 97-110. https://doi.org/10.1016/j.drup.2004.01.004
  38. Razi, S., Haghparast, A., Chodari Khameneh, S., Ebrahimi Sadrabadi, A., Aziziyan, F., Bakhtiyari, M., Nabi-Afjadi, M., Tarhriz, V., Jalili, A. and Zalpoor, H. (2023) The role of tumor microenvironment on cancer stem cell fate in solid tumors. Cell Commun. Signal. 21, 143.
  39. Ryoo, I. G., Choi, B. H., Ku, S. K. and Kwak, M. K. (2018) High CD44 expression mediates p62-associated NFE2L2/NRF2 activation in breast cancer stem cell-like cells: implications for cancer stem cell resistance. Redox. Biol. 17, 246-258. https://doi.org/10.1016/j.redox.2018.04.015
  40. Singh, S., Trevino, J., Bora-Singhal, N., Coppola, D., Haura, E., Altiok, S. and Chellappan, S. P. (2012) EGFR/Src/Akt signaling modulates Sox2 expression and self-renewal of stem-like side-population cells in non-small cell lung cancer. Mol. Cancer 11, 73.
  41. Sjostrom, J., Blomqvist, C., von Boguslawski, K., Bengtsson, N. O., Mjaaland, I., Malmstrom, P., Ostenstadt, B., Wist, E., Valvere, V., Takayama, S., Reed, J. C. and Saksela, E. (2002) The predictive value of bcl-2, bax, bcl-xL, bag-1, fas, and fasL for chemotherapy response in advanced breast cancer. Clin. Cancer Res. 8, 811-816.
  42. Soleymani, L., Zarrabi, A., Hashemi, F., Hashemi, F., Zabolian, A., Banihashemi, S. M., Moghadam, S. S., Hushmandi, K., Samarghandian, S., Ashrafizadeh, M. and Khan, H. (2021) Role of ZEB family members in proliferation, metastasis, and chemoresistance of prostate cancer cells: revealing signaling networks. Curr. Cancer Drug Targets 21, 749-767. https://doi.org/10.2174/1568009621666210601114631
  43. Strijker, M., Belkouz, A., van der Geest, L. G., van Gulik, T. M., van Hooft, J. E., de Meijer, V. E., Haj Mohammad, N., de Reuver, P. R., Verheij, J., de Vos-Geelen, J., Wilmink, J. W., Groot Koerkamp, B., Klumpen, H. J. and Besselink, M. G.; Dutch Pancreatic Cancer Group (2019) Treatment and survival of resected and unresected distal cholangiocarcinoma: a nationwide study. Acta Oncol. 58, 1048-1055. https://doi.org/10.1080/0284186X.2019.1590634
  44. Sun, Q., Li, J., Wang, G. and Xie, Y. (2014) Role of the embryonic protein SOX2 in cholangiocarcinoma. Cell Biochem. Biophys. 70, 1311-1316. https://doi.org/10.1007/s12013-014-0056-8
  45. Suwannakul, N., Ma, N., Thanan, R., Pinlaor, S., Ungarreevittaya, P., Midorikawa, K., Hiraku, Y., Oikawa, S., Kawanishi, S. and Murata, M. (2018) Overexpression of CD44 variant 9: a novel cancer stem cell marker in human cholangiocarcinoma in relation to inflammation. Mediators Inflamm. 2018, 4867234.
  46. Suwannakul, N., Ma, N., Midorikawa, K., Oikawa, S., Kobayashi, H., He, F., Kawanishi, S. and Murata, M. (2020) CD44v9 induces stem cell-like phenotypes in human cholangiocarcinoma. Front. Cell Dev. Biol. 8, 417.
  47. Vaquero, J., Guedj, N., Claperon, A., Nguyen Ho-Bouldoires, T. H., Paradis, V. and Fouassier, L. (2017) Epithelial-mesenchymal transition in cholangiocarcinoma: from clinical evidence to regulatory networks. J. Hepatol. 66, 424-441. https://doi.org/10.1016/j.jhep.2016.09.010
  48. Vogler, M. (2014) Targeting BCL2-proteins for the treatment of solid tumours. Adv. Med. 2014, 943648.
  49. Wang, C., Mao, Z. P., Wang, L., Zhang, F. H., Wu, G. H., Wang, D. Y. and Shi, J. L. (2017) Cordycepin inhibits cell growth and induces apoptosis in human cholangiocarcinoma. Neoplasma 64, 834-839. https://doi.org/10.4149/neo_2017_604
  50. Wu, H. J. and Chu, P. Y. (2019) Role of cancer stem cells in cholangiocarcinoma and therapeutic implications. Int. J. Mol. Sci. 20, 4154.
  51. Xie, T., Liu, B., Dai, C. G., Lu, Z. H., Dong, J. and Huang, Q. (2019) Glioma stem cells reconstruct similar immunoinflammatory microenvironment in different transplant sites and induce malignant transformation of tumor microenvironment cells. J. Cancer Res. Clin. Oncol. 145, 321-328. https://doi.org/10.1007/s00432-018-2786-2
  52. Xue, D., Zhou, X. and Qiu, J. (2020) Emerging role of NRF2 in ROS-mediated tumor chemoresistance. Biomed. Pharmacother. 131, 110676.
  53. Yan, B., Gong, Y., Meng, W., Sun, H., Li, W., Ding, K., Dang, C., Gao, X., Sun, W., Yuan, C., Wang, S. and Yao, L. H. (2023) Cordycepin protects islet beta-cells against glucotoxicity and lipotoxicity via modulating related proteins of ROS/JNK signaling pathway. Biomed. Pharmacother. 163, 114776.
  54. Zhang, S., Xiong, X. and Sun, Y. (2020) Functional characterization of SOX2 as an anticancer target. Signal Transduct. Target. Ther. 5, 135.
  55. Zhang, S. R., Pan, M., Gao, Y. B., Fan, R. Y., Bin, X. N., Qian, S. T., Tang, C. L., Ying, H. J., Wu, J. Q. and He, M. F. (2023) Efficacy and mechanism study of cordycepin against brain metastases of small cell lung cancer based on zebrafish. Phytomedicine 109, 154613.
  56. Zhao, H., Wu, S., Li, H., Duan, Q., Zhang, Z., Shen, Q., Wang, C. and Yin, T. (2019) ROS/KRAS/AMPK signaling contributes to gemcitabine-induced stem-like cell properties in pancreatic cancer. Mol. Ther. Oncolytics 14, 299-312. https://doi.org/10.1016/j.omto.2019.07.005
  57. Zhou, X., Li, Y., Yang, C., Chen, D., Wang, T., Liu, T., Yan, W., Su, Z., Peng, B. and Ren, X. (2023) Cordycepin reprogramming lipid metabolism to block metastasis and EMT via ERO1A/mTOR/SREBP1 axis in cholangiocarcinoma. Life Sci. 327, 121698.