• Title/Summary/Keyword: XRD analysis

Search Result 2,620, Processing Time 0.028 seconds

The Syntheses, Characterizations, and Photocatalytic Activities of Silver, Platinum, and Gold Doped TiO2 Nanoparticles

  • Loganathan, Kumaresan;Bommusamy, Palanisamy;Muthaiahpillai, Palanichamy;Velayutham, Murugesan
    • Environmental Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.81-90
    • /
    • 2011
  • Different weight percentages of Ag, Pt, and Au doped nano $TiO_2$ were synthesized using the acetic acid hydrolyzed sol-gel method. The crystallite phase, surface morphology combined with elemental composition and light absorption properties of the doped nano $TiO_2$ were comprehensively examined using X-ray diffraction (XRD), $N_2$ sorption analysis, transmission electron microscopic (TEM), energy dispersive X-ray, and DRS UV-vis analysis. The doping of noble metals stabilized the anatase phase, without conversion to rutile phase. The formation of gold nano particles in Au doped nano $TiO_2$ was confirmed from the XRD patterns for gold. The specific surface area was found to be in the range 50 to 85 $m^2$/g. TEM images confirmed the formation a hexagonal plate like morphology of nano $TiO_2$. The photocatalytic activity of doped nano $TiO_2$ was evaluated using 4-chlorophenol as the model pollutant. Au doped (0.5 wt %) nano $TiO_2$ was found to exhibit higher photocatalytic activity than the other noble metal doped nano $TiO_2$, pure nano $TiO_2$ and commercial $TiO_2$ (Degussa P-25). This enhanced photocatalytic activity was due to the cathodic influence of gold in suppressing the electron-hole recombination during the reaction.

Studies on Effect of S/Se Ratio on the Properties of Cu2ZnSn(SxSe1-x)4 (CZTSSe) Thin Films by Sulfo-Selenization of Stacked Precursor Thin Films (열처리 시 S/Se 분말 비율에 따른 Cu2ZnSnSe4 (CZTSSe) 박막의 합성 및 특성 평가)

  • Gang, Myeng Gil;He, Ming Rui;Hong, Chang Woo;Kim, Jin Hyeok
    • Current Photovoltaic Research
    • /
    • v.2 no.4
    • /
    • pp.177-181
    • /
    • 2014
  • $Cu_2ZnSn(S_xSe_{1-x})_4$ (CZTSSe) absorber thin films were prepared on Mo coated soda lime glass substrates by sulfo-selenization of sputtered stacked Zn-Sn-Cu precursor thin films. The Zn-Sn-Cu precursor thin films were sulfo-selenized inside a graphite box containing S and Se powder using rapid thermal processing furnace at $540^{\circ}C$ in Ar atmosphere with pre-treatment at $300^{\circ}C$. The effect of different S/Se ratio on the structural, compositional, morphological and electrical properties of the CZTSSe thin films were studied using XRD (X-ray diffraction), XRF (X-ray fluorescence analysis), FE-SEM (field-emission scanning electron microscopy), respectively. The XRD, FE-SEM, XRF results indicated that the properties of sulfo-selenized CZTSSe thin films were strongly related to the S/Se composition ratio. In particular, the CZTS thin film solar cells with S/(S+Se)=0.25 shows best conversion efficiency of 4.6% ($V_{oc}$ : 348 mV, $J_{sc}$ : $26.71mA/cm^2$, FF : 50%, and active area : $0.31cm^2$). Further detailed analysis and discussion for effect of S/Se composition ratio on the properties CZTSSe thin films will be discussed.

THE REMOVAL OF HEAVY METALS USING HYDROXYAPATITE

  • Lee, Chan-Ki;Kim, Hae-Suk;Kwon, Jae-Hyuk
    • Environmental Engineering Research
    • /
    • v.10 no.5
    • /
    • pp.205-212
    • /
    • 2005
  • The study was conducted to investigate the removal of heavy metals by using Hydroxyapatite(HAp) made from waste oyster shells and wastewater with high concentration of phosphorus. The maximum calcium concentration for the production of HAp in this study was released up to 361 mg/L at pH of 3 by elution experiments. When the pH was at adjusted 6, the maximum calcium released concentration was 41 mg/L. During the elution experiment, most of the calcium was released within 60 minutes. This reaction occurred at both pH levels of 3 and 6. The result of the XRD analysis for the HAp product used in this study shows the main constituent was HAp, as well as OCP. The pH was 8.6. As the temperature increased, the main constituent did not vary, however its structure was crystallized. When the pH was maintained at 3, the removal efficiency decreased as the heavy metal concentration increased. The order of removal efficiency was as follows: $Fe^{2+}$(92%), $Pb^{2+}$(92%) > $Cu^{2+}$(20%) > $Cd^{2+}$(0%). Most of these products were dissolved and did not produce sludge in the course of heavy metals removal. As the heavy metal concentration increased at pH of 6, the removal efficiency increased. The removal efficiencies in all heavy metals were over 80%. From the analysis of the sludge after reaction with heavy metals, the HAp was detected and the OCP peak was not observed. Moreover, lead ion was observed at the peaks of lead-Apatite and lead oxidant. In the case of cadmium, copper and iron ions, hydroxide forms of each ion were also detected.

Investigation of Vanadium-based Thin Interlayer for Cu Diffusion Barrier

  • Han, Dong-Seok;Park, Jong-Wan;Mun, Dae-Yong;Park, Jae-Hyeong;Mun, Yeon-Geon;Kim, Ung-Seon;Sin, Sae-Yeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.41.2-41.2
    • /
    • 2011
  • Recently, scaling down of ULSI (Ultra Large Scale Integration) circuit of CMOS (Complementary Metal Oxide Semiconductor) based electronic devices become much faster speed and smaller size than ever before. However, very narrow interconnect line width causes some drawbacks. For example, deposition of conformal and thin barrier is not easy moreover metallization process needs deposition of diffusion barrier and glue layer. Therefore, there is not enough space for copper filling process. In order to overcome these negative effects, simple process of copper metallization is required. In this research, Cu-V thin alloy film was formed by using RF magnetron sputter deposition system. Cu-V alloy film was deposited on the plane $SiO_2$/Si bi-layer substrate with smooth and uniform surface. Cu-V film thickness was about 50 nm. Cu-V layer was deposited at RT, 100, 150, 200, and $250^{\circ}C$. XRD, AFM, Hall measurement system, and XPS were used to analyze Cu-V thin film. For the barrier formation, Cu-V film was annealed at 200, 300, 400, 500, and $600^{\circ}C$ (1 hour). As a result, V-based thin interlayer between Cu-V film and $SiO_2$ dielectric layer was formed by itself with annealing. Thin interlayer was confirmed by TEM (Transmission Electron Microscope) analysis. Barrier thermal stability was tested with I-V (for measuring leakage current) and XRD analysis after 300, 400, 500, 600, and $700^{\circ}C$ (12 hour) annealing. With this research, over $500^{\circ}C$ annealed barrier has large leakage current. However V-based diffusion barrier annealed at $400^{\circ}C$ has good thermal stability. Thus, thermal stability of vanadium-based thin interlayer as diffusion barrier is good for copper interconnection.

  • PDF

Structural Properties of Ammoniated Thin Cr Films with Oxygen Incorporated During Deposition (산소가 혼입된 Cr 박막의 질화처리에 따른 구조적 특성)

  • Kim, Jun;Byun, Changsob;Kim, Seontai
    • Korean Journal of Materials Research
    • /
    • v.24 no.4
    • /
    • pp.194-200
    • /
    • 2014
  • Metallic Cr film coatings of $1.2{\mu}m$ thickness were prepared by DC magnetron sputter deposition method on c-plane sapphire substrates. The thin Cr films were ammoniated during horizontal furnace thermal annealing for 10-240 min in $NH_3$ gas flow conditions between 400 and $900^{\circ}C$. After annealing, changes in the crystal phase and chemical constituents of the films were characterized using X-ray diffraction (XRD) and energy dispersive X-ray photoelectron spectroscopy (XPS) surface analysis. Nitridation of the metallic Cr films begins at $500^{\circ}C$ and with further increases in annealing temperature not only chromium nitrides ($Cr_2N$ and CrN) but also chromium oxide ($Cr_2O_3$) was detected. The oxygen in the films originated from contamination during the film formation. With further increase of temperature above $800^{\circ}C$, the nitrogen species were sufficiently supplied to the film's surface and transformed to the single-phase of CrN. However, the CrN phase was only available in a very small process window owing to the oxygen contamination during the sputter deposition. From the XPS analysis, the atomic concentration of oxygen in the as-deposited film was about 40 at% and decreased to the value of 15 at% with increase in annealing temperature up to $900^{\circ}C$, while the nitrogen concentration was increased to 42 at%.

Etching Characteristics of YMnO3 Thin Films in Cl Based Inductively Coupled Plasma

  • Kim, Dong-Pyo;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.2
    • /
    • pp.29-34
    • /
    • 2003
  • Ferroelectric YMnO$_3$ thin films were etched with Ar/C1$_2$ and CF$_4$/C1$_2$ Plasma. The maximum etch rate of YMnO$_3$ thin film was 300 $\AA$/min at a Cl$_2$/Ar gas mixing ratio of 8/2, an RF power of 800 W, a do bias of-200 V, a chamber pressure of 15 mTorr, and a substrate temperature of 3$0^{\circ}C$. From the X-ray photoelectron spectroscopy (XPS) analysis, yttrium was not only etched by chemical reactions with Cl atoms, but also assisted by Ar ion bombardments in Ar/C1$_2$ plasma. In CF$_4$/C1$_2$ plasma, yttrium formed nonvolatile YF$_{x}$ compounds and remained on and the etched surface of YMnO$_3$. Manganese etched effectively by forming volatile MnCl$_{x}$ and MnF$_{y}$. From the X-ray diffraction (XRD) analysis, the (0004) diffraction peak intensity of the YMnO$_3$ thin film etched in Ar/Cl$_2$ plasma shows lower than that in CF$_4$/Cl$_2$ plasma. It indicates that the crystallinty of the YMnO$_3$ thin film is more easily damaged by the Af ion bombardment than the changes of stoichiometry due to nonvolatile etch by-products.cts.s.

Pressureless Infiltration Processing of B4C/Al Composite by Surface Modification (표면 개질에 의한 상압에서의 B4C/Al복합체 제조 방법)

  • 임경란;강덕일;김창삼
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.2
    • /
    • pp.128-131
    • /
    • 2003
  • Formation of$B_4C/Al$composite by pressureless infiltration was investigated by lowering wetting angle via surface modification of $B_4C$powder with alumina precursor. Surface modification was confirmed by zeta potential analysis. The$B_4C/Al$composite was prepared by placing an Al 6061 disk on the$B_4C$preform and heating at $1030{\circ}C$/20 min under a flowing argon, but no infiltration took place for a bare $B_4C$ preform even at$1250{\circ}C$/30 min. Analysis of XRD and SEM showed the $Al_3BC$phase besides$B_4C$and Al, but no trace of deteriorative$A1_4C_3$.

Surface Transition by Solvent Washing Effects and Biological Properties of Metal Treated Activated Carbons

  • Oh, Won-Chun
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.639-646
    • /
    • 2004
  • Metal treated activated carbons are prepared using various metals. Adsorption behaviors, morphologies, as well as antibacterial effects of metal treated samples are compared before and after solvent washing. Adsorption isotherms are used to characterize the porous structure of metal treated activated carbons before and after the solvent washing with acetone or ethyl alcohol. From these data, it is noticed that the changes in physicochemical properties of metal treated activated carbons depend on the solvents employed. Similar results are observed from BET data obtained from nitrogen adsorption isotherms. From scanning electron microscopy (SEM) studies, the changes in shape and size of metal particles are observed after the samples are washed with solvents. These changes result in different blocking effects, which, in turn, affect the adsorption behavior of metal treated activated carbons. X-ray diffraction (XRD) patterns of the samples treated with different metals are different each other. High intense sharp peaks attributed to metals are observed from silver treated samples, while the peaks are not observed from copper treated samples. To compare thermodynamic behavior of metal treated activated carbons washed with different type of solvents, differential scanning calorimetric (DSC) analysis is carried out. The analysis shows similar endothermic curves for all of the samples. Finally, antibacterial effects of metal treated activated carbon against Escherichia coli are discussed. Comparing the effects among the metals employed, highest effects are obtained from Cd, while lowest effects are obtained from Cu. Antibacterial activity becomes higher with the increase of the amount of metals treated, Optimum concentrations of metals to treat activated carbons, obtained from a shake flask test, are known to be 0.4, 0.1, and 0.6 moles for Ag, Cd, and Cu, respectively.

An Analysis of the Behavior of Rock Slope with Excavation-Induced Tension Cracks Located in DongHae Highway Construction Site (개착과정에서 인장균열이 발생된 동해고속도로 건설현장 암반사면의 거동 해석)

  • 조태진;이창영;고기성
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.15-27
    • /
    • 2004
  • Sliding aspects of rock slope, where large-scaled tension cracks are induced during preliminary excavation, have been analyzed. Structure of rock mass is investigated by performing the electrical resistivity survey and the orientations and positions of discontinuities are measured from DOM-drilled core log. Geological evidence far primary failure movement has been detected and clay minerals which possess swelling properties are identified through XRD analysis. Slope stability is examined by considering the orientations of discontinuities and their trace distributions on the cut-face and neighboring natural slope surface. Both orientations and positions of failure-invoking discontinuity planes, traces of which are exposed within the anticipated sliding region, are concerned fur analyzing the preferred sliding directions. Regional sliding vectors are assessed based on the relative positions of potential sliding planes in the boreholes and the general trend of anticipated failure movement of rock slope is also investigated.

Manufacture of $BaTiO_3$ Powders by Gel-hydrothermal Method (겔의 수열합성법에 의한 다공성 구형 $BaTiO_3$ 미분체의 제조)

  • Kim, Yong-Ryul
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.306-314
    • /
    • 2005
  • In this study, spherical $pre-BaTiO_3$ particles are prepared by gelation and aging process in autoclave without catalysts. The (Ba-Ti) gel used as a starting material was prepared by aging mixtures of titanyl acylate with barium acetate aqueous solution([glacial acetic acid (AcOH)]/[titanium isopropoxide (TIP)] 4, [barium acetate]/[TIP] 1) at $45^{\circ}C$ for 48hrs. XRD and SEM results for the (Ba-Ti) gel sample at aging process showed that the gel was formed via aggregation of the fine particles. It seems to be the primary particles of bulk (Ba-Ti) gel amorphous, but the spatial arrangement of barium and titanium in the (Ba-Ti) gel is similar to that in crystalline $BaTiO_3$ particles. From XRD and FT-IR. spectroscopy analysis it was found that the crystal structure of the prepared particles continuously transformed from amorphous to tetragonal as the calcination temperature increased, and crystallized spherical cubic and tetragonal $BaTiO_3$ powder obtained at the very low calcination temperature between $500^{\circ}C$ and $900^{\circ}C$ after 1hrs of heat treatment respectively. According to BET analysis result, final particle have pore structure of ink bottle shape which is produced by aggregation of fine spherical particles with surface area of $280m^2/g$ and average pore size of 130nm.