DOI QR코드

DOI QR Code

The Syntheses, Characterizations, and Photocatalytic Activities of Silver, Platinum, and Gold Doped TiO2 Nanoparticles

  • Received : 2010.06.13
  • Accepted : 2011.04.25
  • Published : 2011.06.30

Abstract

Different weight percentages of Ag, Pt, and Au doped nano $TiO_2$ were synthesized using the acetic acid hydrolyzed sol-gel method. The crystallite phase, surface morphology combined with elemental composition and light absorption properties of the doped nano $TiO_2$ were comprehensively examined using X-ray diffraction (XRD), $N_2$ sorption analysis, transmission electron microscopic (TEM), energy dispersive X-ray, and DRS UV-vis analysis. The doping of noble metals stabilized the anatase phase, without conversion to rutile phase. The formation of gold nano particles in Au doped nano $TiO_2$ was confirmed from the XRD patterns for gold. The specific surface area was found to be in the range 50 to 85 $m^2$/g. TEM images confirmed the formation a hexagonal plate like morphology of nano $TiO_2$. The photocatalytic activity of doped nano $TiO_2$ was evaluated using 4-chlorophenol as the model pollutant. Au doped (0.5 wt %) nano $TiO_2$ was found to exhibit higher photocatalytic activity than the other noble metal doped nano $TiO_2$, pure nano $TiO_2$ and commercial $TiO_2$ (Degussa P-25). This enhanced photocatalytic activity was due to the cathodic influence of gold in suppressing the electron-hole recombination during the reaction.

Keywords

References

  1. Fujishima A, Rao TN, Tryk DA. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C: Photochem. Rev. 2000;1:1-21. https://doi.org/10.1016/S1389-5567(00)00002-2
  2. Rehman S, Ullah R, Butt AM, Gohar ND. Strategies of making $TiO_2$ and ZnO visible light active. J. Hazard. Mater. 2009;170:560-569. https://doi.org/10.1016/j.jhazmat.2009.05.064
  3. Moon J, Yun CY, Chung KW, Kang MS, Yi J. Photocatalytic activation of $TiO_2$ under visible light using Acid Red 44. Catal. Today 2003;87:77-86. https://doi.org/10.1016/j.cattod.2003.10.009
  4. Kim S, Choi W. Visible-light-induced photocatalytic degradation of 4-chlorophenol and phenolic compounds in aqueous suspension of pure titania: demonstrating the existence of a surface-complex-mediated path. J. Phys. Chem. B 2005;109:5143-5149. https://doi.org/10.1021/jp045806q
  5. Li XZ, Li FB. Study of $Au/Au^{3+}-TiO_2$ photocatalysts toward visible photooxidation for water and wastewater treatment. Environ. Sci. Technol. 2001;35:2381-2387. https://doi.org/10.1021/es001752w
  6. Wu CG, Chao CC, Kuo FT. Enhancement of the photo catalytic performance of TiO2 catalysts via transition metal modification. Catal. Today 2004;97:103-112. https://doi.org/10.1016/j.cattod.2004.04.055
  7. Mitsuhara K, Kitsudo Y, Matsumoto H, et al. Electronic charge transfer between Au nano-particles and $TiO_2$-terminated $SrTiO_3$(0 0 1) substrate. Surf. Sci. 2010;604:548-554. https://doi.org/10.1016/j.susc.2009.12.024
  8. Subramanian V, Wolf E, Kamat PV. Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of $TiO_2$ films? J. Phys. Chem. B 2001;105:11439-11446. https://doi.org/10.1021/jp011118k
  9. Haick H, Paz Y. Long-range effects of noble metals on the photocatalytic properties of titanium dioxide. J. Phys. Chem. B 2003;107:2319-2326. https://doi.org/10.1021/jp026940i
  10. Ni M, Leung MK, Leung DY, Sumathy K. A review and recent developments in photocatalytic water-splitting using $TiO_2$ for hydrogen production. Renew. Sustain. Energ. Rev. 2007;11:401-425. https://doi.org/10.1016/j.rser.2005.01.009
  11. Anpo M, Takeuchi M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J. Catal. 2003;216:505-516. https://doi.org/10.1016/S0021-9517(02)00104-5
  12. Subramanian V, Wolf EE, Kamat PV. Catalysis with $TiO_2$/gold nanocomposites. effect of metal particle size on the fermi level equilibration. J. Am. Chem. Soc. 2004;126:4943-4950. https://doi.org/10.1021/ja0315199
  13. Liu SX, Qu ZP, Han XW, Sun CL. A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide. Catal. Today 2004;93-95:877-884. https://doi.org/10.1016/j.cattod.2004.06.097
  14. Chao HE, Yun YU, Xingfang HU, Larbot A. Effect of silver doping on the phase transformation and grain growth of solgel titania powder. J. Eur. Ceram. Soc. 2003;23:1457-1464. https://doi.org/10.1016/S0955-2219(02)00356-4
  15. Herrmann JM, Tahiri H, Ait-Ichou Y, Lassaletta G, Gonzalez-Elipe AR, Fernandez A. Characterization and photocatalytic activity in aqueous medium of $TiO_2$ and Ag-$TiO_2$ coatings on quartz. Appl. Catal. B Environ. 1997;13:219-228. https://doi.org/10.1016/S0926-3373(96)00107-5
  16. Zhao G, Kozuka H, Yoko T. Sol-gel preparation and photo-electrochemical properties of $TiO_2$ films containing Au and Ag metal particles. Thin Solid Films 1996;277:147-154. https://doi.org/10.1016/0040-6090(95)08006-6
  17. Dobosz A, Sobczyński A. The influence of silver additives on titania photoactivity in the photooxidation of phenol. Water Res. 2003;37:1489-1496. https://doi.org/10.1016/S0043-1354(02)00559-6
  18. Sclafani A, Herrmann JM. Influence of metallic silver and of platinum-silver bimetallic deposits on the photocatalytic activity of titania (anatase and rutile) in organic and aqueous media. J. Photochem. Photobiol. A Chem. 1998;113:181-188. https://doi.org/10.1016/S1010-6030(97)00319-5
  19. Moonsiri M, Rangsunvigit P, Chavadej S, Gulari E. Effects of Pt and Ag on the photocatalytic degradation of 4-chlorophenol and its by-products. Chem. Eng. J. 2004;97:241-248. https://doi.org/10.1016/j.cej.2003.05.003
  20. Wang X, Yu JC, Yip HY, Wu L, Wong PK, Lai SY. A mesoporous $Pt/TiO_2$ nanoarchitecture with catalytic and photocatalytic functions. Chem. Eur. J. 2005;11:2997-3004. https://doi.org/10.1002/chem.200401248
  21. Zanella R, Giorgio S, Henry CR, Louis C. Alternative methods for the preparation of gold nanoparticles supported on $TiO_2$. J. Phys. Chem. B 2002;106:7634-7642. https://doi.org/10.1021/jp0144810
  22. Li H, Bian Z, Zhu J, Huo Y, Lu Y. Mesoporous $Au/TiO_2$ nano-composites with enhanced photocatalytic activity. J. Am. Chem. Soc. 2007;129:4538-4539. https://doi.org/10.1021/ja069113u
  23. Johnson SK, Houk LL, Feng J, Houk RS, Johnson DC. Electrochemical incineration of 4-chlorophenol and the identification of products and intermediates by mass spectrometry. Environ. Sci. Technol. 1999;33:2638-2644. https://doi.org/10.1021/es981045r
  24. Cao Y, Tan H, Shi T, Tang T, Li J. Preparation of Ag-doped $TiO_2$ nanoparticles for photocatalytic degradation of acetamiprid in water. J. Chem. Technol. Biotechnol. 2008;83:546-552. https://doi.org/10.1002/jctb.1831
  25. Liu Y, Chen L, Hu J, Li J, Richards R. $TiO_2$ nanoflakes modified with gold nanoparticles as photocatalysts with high activity and durability under near UV irradiation. J. Phys. Chem. C 2010;114:1641-1645. https://doi.org/10.1021/jp910500c
  26. Ma R, Sasaki T, Bando Y. Layer-by-layer assembled multilayer films of titanate nanotubes, Ag- or Au-loaded nanotubes, and nanotubes/nanosheets with polycations. J. Am. Chem. Soc. 2004;126:10382-10388. https://doi.org/10.1021/ja048855p
  27. Liu ZL, Cui ZL, Zhang ZK. The structural defects and UV-VIS spectral characterization of $TiO_2$ particles doped in the lattice with $Cr^{3+}$ cations. Mater. Charact. 2005;54:123-129. https://doi.org/10.1016/j.matchar.2004.11.008
  28. Stathatos E, Lianos P, Falaras P, Siokou A. Photocatalytically deposited silver nanoparticles on mesoporous $TiO_2$ films. Langmuir 2000;16:2398-2400. https://doi.org/10.1021/la981783t
  29. He J, Ichinose I, Kunitake T, Nakao A. In situ synthesis of noble metal nanoparticles in ultrathin $TiO_2$-gel films by a combination of ion-exchange and reduction processes. Langmuir 2002;18:10005-10010. https://doi.org/10.1021/la0260584
  30. Driessen MD, Grassian VH. Photooxidation of trichloroethylene on $Pt/TiO_2$. J. Phys. Chem. B 1998;102:1418-1423. https://doi.org/10.1021/jp9724075
  31. Bohren CF, Huffman DR. Absorption and scattering of light by small particles. New York: Wiley; 1983. p. 329.
  32. Li X, Fan T, Zhou H, Zhu B, Ding J, Zhang D. A facile way to synthesize biomorphic $N-TiO_2$ incorporated with Au nanoparticles with narrow size distribution and high stability. Microporous Mesoporous Mater. 2008;116:478-484. https://doi.org/10.1016/j.micromeso.2008.05.007
  33. Chen S, Liu Y, Wu G. Stabilized and size-tunable gold nanoparticles formed in a quaternary ammonium-based room-temperature ionic liquid under gamma-irradiation. Nanotechnology 2005;16:2360-2364. https://doi.org/10.1088/0957-4484/16/10/061
  34. Yang L, Li GH, Zhang LD. Effects of surface resonance state on the plasmon resonance absorption of Ag nanoparticles embedded in partially oxidized amorphous Si matrix. Appl. Phys. Lett. 2000;76:1537-1539. https://doi.org/10.1063/1.126088
  35. Jakob M, Levanon H, Kamat PV. Charge Distribution between UV-irradiated $TiO_2$ and gold nanoparticles: Determination of shift in the Fermi level. Nano Lett. 2003;3:353-358. https://doi.org/10.1021/nl0340071
  36. Egerton TA, Mattinson JA. The influence of platinum on UV and 'visible' photocatalysis by rutile and Degussa P25. J. Photochem. Photobiol. A Chem. 2008;194:283-289. https://doi.org/10.1016/j.jphotochem.2007.08.026
  37. Smirnova N, Vorobets V, Linnik O, Manuilov E, Kolbasov G, Eremenko A. Photoelectrochemical and photocatalytic properties of mesoporous $TiO_2$ films modified with silver and gold nanoparticles. Surf. Interface Anal. 2010;42:1205-1208. https://doi.org/10.1002/sia.3237
  38. Park JB, Graciani J, Evans J, et al. High catalytic activity of $Au/CeO_x/TiO_2(110)$ controlled by the nature of the mixed-metal oxide at the nanometer level. Proc. Natl. Acad. Sci. U S A 2009;106:4975-4980. https://doi.org/10.1073/pnas.0812604106

Cited by

  1. Nanoparticles vol.2012, pp.1687-529X, 2012, https://doi.org/10.1155/2012/514856
  2. Photocatalytic degradation of N-heterocyclic aromatics—effects of number and position of nitrogen atoms in the ring vol.20, pp.6, 2013, https://doi.org/10.1007/s11356-012-1313-2
  3. Photocatalytic Activity of Vis-Responsive Ag-Nanoparticles/TiO2 Composite Thin Films Fabricated by Molecular Precursor Method (MPM) vol.3, pp.3, 2013, https://doi.org/10.3390/catal3030625
  4. Reduced Titania Films with Ordered Nanopores and Their Application to Visible Light Water Splitting vol.34, pp.8, 2013, https://doi.org/10.5012/bkcs.2013.34.8.2271
  5. Silver Nanoparticles Supported on TiO<sub>2</sub> and Their Antibacterial Properties: Effect of Surface Confinement and Nonexistence of Plasmon Resonance vol.05, pp.12, 2014, https://doi.org/10.4236/msa.2014.512091
  6. Understanding the superior photocatalytic activity of noble metals modified titania under UV and visible light irradiation vol.16, pp.16, 2014, https://doi.org/10.1039/c3cp54411g
  7. Preparation of platinum modified titanium dioxide nanoparticles with the use of laser ablation in water vol.16, pp.29, 2014, https://doi.org/10.1039/C4CP01923G
  8. on Fish Pathogens under Visible Light vol.2014, pp.1687-529X, 2014, https://doi.org/10.1155/2014/903612
  9. vol.6, pp.17, 2014, https://doi.org/10.1021/am504128t
  10. Titania-Supported Gold Nanoparticles as Efficient Catalysts for the Oxidation of Cellobiose to Organic Acids in Aqueous Medium vol.6, pp.7, 2014, https://doi.org/10.1002/cctc.201402096
  11. Synthesis, structure and photocatalytic activity of calcined Mg-Al-Ti-layered double hydroxides vol.32, pp.1, 2015, https://doi.org/10.1007/s11814-014-0199-8
  12. Schottky barrier and surface plasmonic resonance phenomena towards the photocatalytic reaction: study of their mechanisms to enhance photocatalytic activity vol.5, pp.5, 2015, https://doi.org/10.1039/C4CY01545B
  13. Pilot scale thin film plate reactors for the photocatalytic treatment of sugar refinery wastewater vol.23, pp.17, 2016, https://doi.org/10.1007/s11356-016-6964-y
  14. Tuning the Band Gap in Titanium Dioxide Thin Films by Surfactant-Mediated Confinement and Patterning of Gold Nanoparticles vol.121, pp.39, 2017, https://doi.org/10.1021/acs.jpcc.7b04964
  15. Preparation and Photocatalytic Properties of the Chrome Doped Nano-TiO2 Emulsion vol.675-677, pp.1662-7482, 2014, https://doi.org/10.4028/www.scientific.net/AMM.675-677.154
  16. Density functional theory study of the adsorption of acetone on the pure and transition metal doped (TiO2)38 clusters vol.119, pp.None, 2011, https://doi.org/10.1016/j.vacuum.2015.05.003
  17. Band gap tuning in gold nanoparticle decorated TiO2films: effect of Au nanoparticle concentration vol.4, pp.6, 2017, https://doi.org/10.1088/2053-1591/aa73fb
  18. P‐doped TiO 2 Nanofibers Decorated with Ag Nanoparticles for Enhanced Photocatalytic Activity under Simulated Solar Light vol.5, pp.44, 2020, https://doi.org/10.1002/slct.202003287
  19. TiO2 Doped with Noble Metals as an Efficient Solution for the Photodegradation of Hazardous Organic Water Pollutants at Ambient Conditions vol.13, pp.1, 2021, https://doi.org/10.3390/w13010019
  20. Plasma Treatment as a Promising Environmentally Benign Approach for Synthesis of Valuable Multi‐gas Doped Nano‐TiO 2 ‐P25: An Efficient Way to Boost the Photocatalytic vol.97, pp.4, 2011, https://doi.org/10.1111/php.13374
  21. Fast photocatalytic polypropylene degradation by nanostructured bismuth catalysts vol.190, pp.None, 2021, https://doi.org/10.1016/j.polymdegradstab.2021.109648