• 제목/요약/키워드: Wrapper Approach

검색결과 18건 처리시간 0.019초

Speech Feature Selection of Normal and Autistic children using Filter and Wrapper Approach

  • Akhtar, Muhammed Ali;Ali, Syed Abbas;Siddiqui, Maria Andleeb
    • International Journal of Computer Science & Network Security
    • /
    • 제21권5호
    • /
    • pp.129-132
    • /
    • 2021
  • Two feature selection approaches are analyzed in this study. First Approach used in this paper is Filter Approach which comprises of correlation technique. It provides two reduced feature sets using positive and negative correlation. Secondly Approach used in this paper is the wrapper approach which comprises of Sequential Forward Selection technique. The reduced feature set obtained by positive correlation results comprises of Rate of Acceleration, Intensity and Formant. The reduced feature set obtained by positive correlation results comprises of Rasta PLP, Log energy, Log power and Zero Crossing Rate. Pitch, Rate of Acceleration, Log Power, MFCC, LPCC is the reduced feature set yield as a result of Sequential Forwarding Selection.

다양한 웹 데이터를 이용한 특정 유기체의 단백질 상호작용 데이터베이스 개발 (Development of an Organism-specific Protein Interaction Database with Supplementary Data from the Web Sources)

  • 황두성
    • 정보처리학회논문지D
    • /
    • 제9D권6호
    • /
    • pp.1091-1096
    • /
    • 2002
  • 이 논문은 단백질 상호작용 데이터베이스 개발에 관해 기술한다. 개발된 시스템의 특징으로서는 첫째, 생물학자들의 직접적인 실험을 통해 얻어진 단백질 상호작용 및 유전인자 데이터를 제공한다. 둘째, 생물학적으로 관련 있는 다양한 형식의 데이터를 wrapper를 통해 광범위하게 분포된 웹사이트들로부터 추출한다. 셋째, 다양한 웹 데이터들 간의 어휘적, 의미적 이질성을 완화하기 위해 wrapper-mediator에 의한 계층적 모듈 구조를 이용하여 추출된 데이터는 통합 과정을 거친 후, 데이터베이스 저장 및 검색을 가능하게 하였다. 현재까지, 주어진 약 11,500 단백질들에 대해, 생물적으로 의미 있는 데이터를 약 40% 정도 데이터베이스 화 했다. 본 개발된 시스템은 프로티오믹스 연구에서 데이터 분석에 유용할 것으로 기대된다.

새로운 얼굴 특징공간을 이용한 모델 기반 얼굴 표정 인식 (Model based Facial Expression Recognition using New Feature Space)

  • 김진옥
    • 정보처리학회논문지B
    • /
    • 제17B권4호
    • /
    • pp.309-316
    • /
    • 2010
  • 본 연구에서는 얼굴 그리드 각도를 특징공간으로 하는 새로운 모델 기반 얼굴 표정 인식 방법을 제안한다. 제안 방식은 6가지 얼굴 대표 표정을 인식하기 위해 표정 그리드를 이용하여 그리드의 각 간선과 정점이 형성하는 각도를 기반으로 얼굴 특징 공간을 구성한다. 이 방법은 다른 표정 인식 알고리즘의 정확도를 낮추는 원인인 변환, 회전, 크기변화와 같은 어파인 변환에 강건한 특징을 보인다. 또한, 본 연구에서는 각도로 특징공간을 구성하고 이 공간 내에서 Wrapper 방식으로 특징 부분집합을 선택하는 과정을 설명한다. 선택한 특징들은 SVM, 3-NN 분류기를 이용해 분류하고 분류 결과는 2중 교차검증을 통해 검증하도록 한다. 본 연구가 제안한 방법에서는 94%의 표정 인식 결과를 보였으며 특히 특징 부분집합 선택 알고리즘을 적용한 결과 전체 특징을 이용한 경우보다 약 10%의 인식율 개선 효과를 보인다.

Efficient Pre-Bond Testing of TSV Defects Based on IEEE std. 1500 Wrapper Cells

  • Jung, Jihun;Ansari, Muhammad Adil;Kim, Dooyoung;Park, Sungju
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제16권2호
    • /
    • pp.226-235
    • /
    • 2016
  • The yield of 3D stacked IC manufacturing improves with the pre-bond integrity testing of through silicon vias (TSVs). In this paper, an efficient pre-bond test method is presented based on IEEE std. 1500, which can precisely diagnose any happening of TSV defects. The IEEE std. 1500 wrapper cells are augmented for the proposed method. The pre-bond TSV test can be performed by adjusting the driving strength of TSV drivers and the test clock frequency. The experimental results show the advantages of the proposed approach.

Improving the Cyber Security over Banking Sector by Detecting the Malicious Attacks Using the Wrapper Stepwise Resnet Classifier

  • Damodharan Kuttiyappan;Rajasekar, V
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권6호
    • /
    • pp.1657-1673
    • /
    • 2023
  • With the advancement of information technology, criminals employ multiple cyberspaces to promote cybercrime. To combat cybercrime and cyber dangers, banks and financial institutions use artificial intelligence (AI). AI technologies assist the banking sector to develop and grow in many ways. Transparency and explanation of AI's ability are required to preserve trust. Deep learning protects client behavior and interest data. Deep learning techniques may anticipate cyber-attack behavior, allowing for secure banking transactions. This proposed approach is based on a user-centric design that safeguards people's private data over banking. Here, initially, the attack data can be generated over banking transactions. Routing is done for the configuration of the nodes. Then, the obtained data can be preprocessed for removing the errors. Followed by hierarchical network feature extraction can be used to identify the abnormal features related to the attack. Finally, the user data can be protected and the malicious attack in the transmission route can be identified by using the Wrapper stepwise ResNet classifier. The proposed work outperforms other techniques in terms of attack detection and accuracy, and the findings are depicted in the graphical format by employing the Python tool.

PPI 네트워크에서의 래퍼 기반 단백질 식별 (Wrapper-based Approach for Protein Identification in PPI Network)

  • 이용호;최재훈;임명은;박수준
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (A)
    • /
    • pp.7-9
    • /
    • 2006
  • 단백질 상호작용 관계들은 고 성능 실험 기법을 이용한 생물학적 실험에 의해서 대규모로 추출되고, 동시에 이들을 구성하는 단백질 데이터 역시 공공 데이터베이스에 빈번하게 갱신되고 있다. 이 갱신으로 인하여 인터넷을 통해 공개되는 공공 데이터베이스와 PPI(Protein-Protein interaction) 네트워크에 포함된 단백질 데이터가 서로 일치하지 않게 된다. 본 논문에서는 PPI 네트워크에 존재하는 단백질을 래퍼(Wrapper)를 이용하여 빈번하게 갱신되는 공공 데이터베이스의 단백질로 식별하고, 이 식별을 통해 PPI 네트워크에 존재하는 데이터들을 항상 최신 데이터로 동기화함으로써 데이터의 실시간성을 제공하고 데이터에 대한 신뢰도를 보장할 수 있도록 하였다.

  • PDF

TCP/IP프로토콜 스택을 위한 RISC 기반 송신 래퍼 프로세서 IP 설계 (Design of RISC-based Transmission Wrapper Processor IP for TCP/IP Protocol Stack)

  • 최병윤;장종욱
    • 한국정보통신학회논문지
    • /
    • 제8권6호
    • /
    • pp.1166-1174
    • /
    • 2004
  • 본 논문은 TCP/IP 프로토콜 스택을 위한 RISC 기반 송신 래퍼 프로세서의 설계를 기술하였다. 설계된 프로세서는 이중 뱅크 구조를 갖는 입출력 버퍼, 32 비트 RISC 마이크로프로세서, 온라인 체크섬 계산 기능을 갖는 DMA 모듈, 메모리 모듈로 구성되어 있다. TCP/IP 프로토콜의 다양한 동작모드를 지원하기 위해 기존의 상태 머신 기반의 설계 방식이 아닌 RISC 프로세서에 기반을 둔 하드웨어-소프트웨어 공동설계 설계기법이 사용되었다. 데이터 전달 동작과 체크섬 동작의 순차적인 수행에 기인한 커다란 지변 시간을 제거하기 위해, 데이터 전달 동작과 병렬적으로 체크섬 동작을 수행할 수 있는 DMA 모듈이 채택되었다. 가변 크기의 입출력 버퍼를 제외한 프로세서는 0.35${\mu}m$ CMOS 공정 조건에서 약 23,700개의 게이트로 구성되며, 최대 동작 주파수는 약 167MHz를 가짐을 확인하였다.

Prototype-based Classifier with Feature Selection and Its Design with Particle Swarm Optimization: Analysis and Comparative Studies

  • Park, Byoung-Jun;Oh, Sung-Kwun
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권2호
    • /
    • pp.245-254
    • /
    • 2012
  • In this study, we introduce a prototype-based classifier with feature selection that dwells upon the usage of a biologically inspired optimization technique of Particle Swarm Optimization (PSO). The design comprises two main phases. In the first phase, PSO selects P % of patterns to be treated as prototypes of c classes. During the second phase, the PSO is instrumental in the formation of a core set of features that constitute a collection of the most meaningful and highly discriminative coordinates of the original feature space. The proposed scheme of feature selection is developed in the wrapper mode with the performance evaluated with the aid of the nearest prototype classifier. The study offers a complete algorithmic framework and demonstrates the effectiveness (quality of solution) and efficiency (computing cost) of the approach when applied to a collection of selected data sets. We also include a comparative study which involves the usage of genetic algorithms (GAs). Numerical experiments show that a suitable selection of prototypes and a substantial reduction of the feature space could be accomplished and the classifier formed in this manner becomes characterized by low classification error. In addition, the advantage of the PSO is quantified in detail by running a number of experiments using Machine Learning datasets.

Identification of Chinese Event Types Based on Local Feature Selection and Explicit Positive & Negative Feature Combination

  • Tan, Hongye;Zhao, Tiejun;Wang, Haochang;Hong, Wan-Pyo
    • Journal of information and communication convergence engineering
    • /
    • 제5권3호
    • /
    • pp.233-238
    • /
    • 2007
  • An approach to identify Chinese event types is proposed in this paper which combines a good feature selection policy and a Maximum Entropy (ME) model. The approach not only effectively alleviates the problem that classifier performs poorly on the small and difficult types, but improve overall performance. Experiments on the ACE2005 corpus show that performance is satisfying with the 83.5% macro - average F measure. The main characters and ideas of the approach are: (1) Optimal feature set is built for each type according to local feature selection, which fully ensures the performance of each type. (2) Positive and negative features are explicitly discriminated and combined by using one - sided metrics, which makes use of both features' advantages. (3) Wrapper methods are used to search new features and evaluate the various feature subsets to obtain the optimal feature subset.

건강행위정보기반 고혈압 위험인자 및 예측을 위한 통계분석 (Statistical Analysis for Risk Factors and Prediction of Hypertension based on Health Behavior Information)

  • 허병문;김상엽;류근호
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권4호
    • /
    • pp.685-692
    • /
    • 2018
  • 본 연구는 통계분석을 이용한 중년 성인의 고혈압 예측모델 개발이 목적이다. 국민건강영양조사자료(2013년-2016년)를 사용하여 통계분석과 예측모델을 개발하였다. 이진 로지스틱 회귀분석으로 통계적 유의한 고혈압 위험인자를 제시하였으며, Wrapper 변수선택기법을 적용한 로지스틱회귀와 나이브베이즈 알고리즘을 이용하여 예측모델을 개발하였다. 통계분석에서 고혈압에 가장 높은 연관성을 갖는 인자는 남성에서 WHtR (p<0.0001, OR = 2.0242), 여성에서 AGE(p<0.0001, OR = 3.9185)로 나타났다. 예측모델의 성능평가에서, 로지스틱 회귀 모델이 남성(AUC = 0.782)과 여성(AUC = 0.858)에서 가장 좋은 예측력을 보였다. 우리의 연구 결과는 고혈압에 대한 대규모 스크리링 도구를 개발하는데 중요한 정보를 제공하며, 고혈압 연구에 대한 기반정보로 활용할 수 있다.